Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 34

Details

Autor(en) / Beteiligte
Titel
Correlation of structural and optical properties of AlGaN films grown on SiN-treated sapphire by MOVPE
Ist Teil von
  • Materials science & engineering. B, Solid-state materials for advanced technology, 2021-01, Vol.263, p.114866, Article 114866
Ort / Verlag
Lausanne: Elsevier B.V
Erscheinungsjahr
2021
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • [Display omitted] •AlGaN layers are grown by MOVPE with and without GaN-template.•AlGaN layers grown without (with) GaN-template are under compressive (tensile) strain.•Strong correlation between dislocations density, PL decay, and carrier mobility.•A linear relation between the internal electric-field and dislocation density.•Prediction of the polarization-induced electric field at zero dislocation density. We investigated the structural and optical properties of AlGaN films grown on SiN-treated sapphire substrates, without and with GaN-template, by atmospheric pressure metal organic vapor phase epitaxy. The samples were characterized using high-resolution X-ray diffraction (HR-XRD), time-resolved photoluminescence (TR-PL), and photoreflectance (PR) spectroscopies. Furthermore, the carrier mobility was determined from Hall-effect measurements. When the AlGaN (GaN-template) layer thickness increases up to 0.6 µm (1.3 µm), an increase in the PL decay times is observed and correlated with the transition from 3D to 2D growth mode resulting in a decrease in the dislocations density as obtained from the HR-XRD measurements. Beyond the aforementioned layer thicknesses, we observed a deterioration in the PL transient corresponds to an increase in the density of VAl-related complexes during the relaxation process, which act as non-radiative recombination centers. Our observations strongly suggest that this type of defects influences the carrier transport and carrier recombination process in the AlGaN layers. Furthermore, our results reveal a phenomenological linear relationship between the internal electric field, obtained from the PR measurements, and the dislocations density. This finding predicts an increase in the GaN internal electric field by about 147 KV/cm when the Al content is increased to 7% in the AlGaN layers. We attribute this increase to a rise in the polarization-induced electric field due to Al incorporation in the AlGaN layer. Based on the obtained correlation between the internal electric field and the dislocation density, we propose an experimental approach that can be utilized to determine the internal electric field, at zero dislocation density, which is very important for designing high-efficient electronic and optoelectronic devices.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX