Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 118

Details

Autor(en) / Beteiligte
Titel
Plant endophytes and secondary metabolites / ǂc edited by Dilfuza Egamberdieva, Javid A. Parray, Kakhramon Davranov
Auflage
1st ed
Ort / Verlag
San Diego : Elsevier Science & Technology,
Erscheinungsjahr
2023
Link zum Volltext
Beschreibungen/Notizen
  • Front Cover -- Plant Endophytes and Secondary Metabolites -- Copyright Page -- Contents -- List of contributors -- 1 Plant endophytes: diversity and ecology -- 1.1 Introduction -- 1.2 Diversity of endophytic bacteria associated with plants -- 1.3 Plant beneficial endophytes -- 1.4 Nitrogen fixing bacteria -- 1.5 Phosphate solubilization -- 1.6 Pytohormone production -- 1.7 Siderophores -- 1.8 Endophytes in agriculture -- 1.9 Conclusions -- References -- 2 Role of soil metagenomics in plant-microbe interaction -- 2.1 Metagenomics -- 2.2 How soil metagenomics helps explore plant-microbe interactions? -- 2.2.1 Steps in a typical sequence-based metagenome projects -- 2.2.1.1 Sampling and processing -- 2.2.1.2 Sequencing technology -- 2.2.1.3 Assembly -- 2.2.1.4 Binning -- 2.2.1.5 Annotation -- 2.2.1.6 Experimental design and statistical analysis -- 2.2.1.7 Data storage and dissemination -- 2.3 Future trends -- 3 Nitrogen-fixing Rhizobium-legume symbiosis in agroecosystems -- 3.1 Introduction -- 3.2 Rhizobium-legumes symbiosis-mediated N2 fixation boon to agro-ecosystems -- 3.3 Biological machinery involved in legume symbiotic interaction -- 3.4 Rhizobial exopolysaccharides-mediated specificity -- 3.4.1 Signaling pathway -- 3.5 Nodule organogenesis and its regulation -- 3.5.1 Development of elite rhizobial inoculants from native strains -- 3.6 Conclusion and future prospects -- References -- 4 Fungal endophytes and their role in sustainable agriculture -- 4.1 Introduction -- 4.2 Classification of fungal endophytes -- 4.3 Bioresources from endophytic fungi -- 4.3.1 Production of enzymes -- 4.3.2 Production of siderophores -- 4.3.3 Production of plant growth hormones -- 4.3.4 Solubilization of minerals -- 4.4 Biocontrol agents -- 4.5 Fungal endophytes for abiotic stress management -- 4.6 Secondary metabolites by fungal endophytes -- 4.7 Conclusion.
  • References -- 5 Plant-associated Arbuscular mycorrhizal fungi: their role in plant nutrition -- 5.1 Introduction -- 5.2 Uptake of phosphorus -- 5.3 Nitrogen nutrition -- 5.4 Potassium uptake -- 5.5 Conclusion and future prospects -- References -- Further reading -- 6 Mycorrhizal symbiosis response under pathogen attack in plants -- Abbreviation -- 6.1 Introduction -- 6.2 Mycorrhizal symbiosis response under pathogen attack in plants -- 6.3 Mycorrhizal colonization and pathogenic infection: similarities -- 6.4 Control mechanism of plant-mycorrhizal association against plant pathogens -- 6.4.1 Improvement in host plant nutrient status -- 6.4.2 Damage recompense -- 6.4.3 Struggle for host photosynthetic product -- 6.4.4 Competition for infection/colonization sites -- 6.4.5 Regulation of plant root morphological structure -- 6.5 Effects of arbuscular mycorrhiza symbiosis on soil pathogens -- 6.6 Effects of arbuscular mycorrhiza symbiosis on bacteria and nematodes -- 6.7 Conclusion -- References -- 7 Medicinal plant-associated endophytic fungi: metabolites and bioactivity -- 7.1 Introduction -- 7.2 Biological activity of endophytic fungi -- 7.2.1 Anticancer compounds -- 7.3 Conclusion -- References -- 8 Endophytes: role in maintaining plant health under stress conditions -- 8.1 Introduction -- 8.1.1 Endophytic colonization sources -- 8.2 Endophytes -- 8.2.1 Bacterial endophyte -- 8.2.2 Endophytic fungi -- 8.3 The effect of abiotic stresses on soil and the beneficial interactions between plants and microbes -- 8.4 The function of endophytes in maintaining plant health -- 8.5 Biocontrol agents -- 8.6 The influence of endophytes on the growth and development of plants -- 8.7 Endophytes' alteration of plants' immune systems -- 8.8 Plant endophytes as a controller of abiotic stress -- 8.9 Signaling molecules and reactive oxygen species in abiotic stress.
  • 8.10 Enhancement of tolerance to abiotic stresses -- 8.10.1 Control of oxidative stress by phytohormones -- 8.10.2 Antioxidant capacity of plants -- 8.10.3 Nitrogen fixation -- 8.11 An overview of endophytic bacteria that colonize plant roots and their mode of action -- 8.12 Conclusion and future prospects -- References -- 9 Production of secondary metabolites from endophytic actinomycetes isolated from marine mangrove plants -- 9.1 Introduction -- 9.2 Diversity of mangrove environment -- 9.3 Mangrove plants and their important -- 9.4 Mangrove endophytes -- 9.5 Secondary metabolites of mangrove endophytes -- 9.6 Endophytic actinomycetes -- 9.7 Endophytic actinomycetes from mangrove plant -- 9.8 Conclusion -- References -- 10 Influence of endophytes on plant growth and abiotic stress -- 10.1 Introduction -- 10.2 Impact of endophytes on plant health -- 10.2.1 Endophytes: resource for bioactive and novel compounds -- 10.2.2 Extracellular enzyme production -- 10.2.3 Plant growth-promoting activity -- 10.2.4 Biocontrol agents -- 10.2.5 Bioremediation/biodegradation activity -- 10.2.6 Induced systemic resistance (ISR) -- 10.3 Endophytes and abiotic stress -- 10.3.1 Drought stress -- 10.3.1.1 Drought stress mitigation by the endophytes -- 10.3.2 Salinity stress -- 10.3.2.1 Effect of soil salinity over plants -- 10.3.2.2 Salinity stress mitigation by microbial endophytes -- 10.3.3 Temperature stress -- 10.3.4 Heavy metal stress -- 10.3.5 Nutrient stress -- 10.4 Conclusion -- References -- 11 Screening of fungal strains resistant to heavy metals -- Abbreviations -- 11.1 Introduction -- 11.1.1 Environmental features of heavy metals -- 11.1.2 Sources of soil contamination with heavy metals -- 11.1.3 Heavy metals as a factor in changes in metabolism in microorganisms -- 11.1.4 Study of the impact of salts of heavy metals on the number of soil microorganisms.
  • 11.1.5 Screening for fungi sustained to various concentrations of heavy metals -- 11.1.6 Determination of MTC and MIC of cadmium for the studied strains of micromycetes -- 11.2 Conclusion -- References -- 12 Endophyte-mediated modulation of secondary metabolism in crops for biotic stress management -- 12.1 Introduction -- 12.2 Endophytes -- 12.3 Endophytic community in phylloplane -- 12.4 Endophytic community in rhizoplane -- 12.5 Production of secondary metabolites with antifungal and antibacterial properties -- 12.6 Fungi as producers of biologically active metabolites -- 12.7 Bacteria as producers of biologically active metabolites -- 12.8 Role of endophytes as biocontrol agents -- 12.9 Mechanisms of diseases control displayed by endophytes -- 12.9.1 Antimicrobials and their activities produced from endophytes -- 12.9.1.1 Antifungal activity of endophytes -- 12.9.1.2 Antibacterial activity of endophytes -- 12.10 Modulation of biotic stress pathways by endophytes -- 12.11 Conclusion -- References -- 13 Cross-talks about hemibiotrophic-necrotrophic pathogens by endophytic Bacillus-based EMOs -- 13.1 Introduction -- 13.2 Effective Bacillus-based EMOs for induction of resistance to phytopathogens -- 13.3 Different ISR and PRRs signals by the cross-talks of hemibiotrophic-necrotrophic pathogens -- 13.4 Cross-talks among different plant hormone signaling pathways -- 13.5 Conclusion and future perspectives -- References -- 14 Current perspectives on green synthesis of nanoparticles using endophytes -- 14.1 Introduction -- 14.2 Green nanotechnology -- 14.3 Endophytic microorganisms -- 14.4 Synthesis of nanoparticles by endophytes -- 14.4.1 Nanoparticles synthesized by endophytic bacteria -- 14.5 Nanoparticles synthesized by endophytic fungi -- 14.6 Nanoparticles synthesized by actinomycetes.
  • 14.7 Synthesis of silver nanoparticles by Terminalia arjuna bark extract and epiphyte Cytobacillus firmus -- 14.8 Conclusion -- References -- Further reading -- 15 Phyllosphere endophytic bacteria: diversity and biotechnological potential -- 15.1 Introduction -- 15.2 Endophytism: the role of light -- 15.3 Interactions between phyllosphere microorganisms and the host plants -- 15.4 Chemotactic signals between plants and endophytes -- 15.5 Types of endophyte transmission in plants -- 15.5.1 Vertical transmission -- 15.5.1.1 Vertical transmission by seed -- 15.5.1.2 Vertical transmission via pollen -- 15.5.1.3 Vertical transmission to roots -- 15.5.2 Horizontal transmission -- 15.5.2.1 Endophytic colonization of the spermosphere -- 15.5.2.2 Root colonization -- 15.5.2.3 Entry into aerial tissues -- 15.5.2.3.1 Airborne dispersion of plant microbiomes -- 15.5.2.3.2 Endophytic colonization of leaves by stomata -- 15.5.2.3.3 Transmission of endophytes by insects -- 15.6 Diversity of phyllosphere plant-endophyte bacteria -- 15.7 Biotechnological applications -- 15.7.1 Plant-endophyte bacteria as bioagents -- 15.7.2 Plant growth-promoting compounds -- 15.7.3 Solubilization of phosphorus and iron -- 15.7.4 Bioactive metabolite prime producers -- 15.7.5 Plant abiotic stress tolerance mechanism-potential providers -- 15.7.6 Production of siderophores -- 15.8 Role of endophytes in agriculture -- 15.9 Recent research trends improving plant-endophyte bacterial association -- 15.9.1 Phyllosphere function and failure of microorganisms -- 15.9.1.1 Phyllosphere for aquatic plants -- 15.10 Conclusion -- References -- 16 Interaction between plants and endophytes: evolutionary significance and its role in plants development -- 16.1 Introduction -- 16.2 Microbial endophyte -- 16.3 Entry and transmission of endophytes into plant.
  • 16.4 Plant endophytes and their interaction.
  • Description based on publisher supplied metadata and other sources.
Sprache
Identifikatoren
ISBN: 0-443-13366-2
Titel-ID: 9925141468506463
Format
1 online resource (464 pages)
Schlagworte
Endophytes, Metabolites