Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 134

Details

Autor(en) / Beteiligte
Titel
Fiber optic measurement techniques
Auflage
2nd ed
Ort / Verlag
London : Elsevier/Academic Press,
Erscheinungsjahr
[2023]
Link zum Volltext
Beschreibungen/Notizen
  • Intro -- Fiber-Optic Measurement Techniques -- Copyright -- Contents -- Preface to first edition -- Preface to the second edition -- Chapter 1: Fundamentals of optical devices -- 1.1. Introduction -- 1.2. Laser diodes and LEDs -- 1.2.1. Pn junction and energy diagram -- 1.2.2. Direct and indirect semiconductors -- 1.2.3. Carrier confinement -- 1.2.4. Spontaneous emission and stimulated emission -- 1.2.5. Light-emitting diodes (LEDs) -- 1.2.5.1. PI curve -- 1.2.5.2. Modulation dynamics -- 1.2.6. Laser diodes (LDs) -- 1.2.6.1. Rate equations -- 1.2.6.2. Steady state solutions of rate equations -- 1.2.6.3. Threshold carrier density -- Threshold current density -- PJ relationship about threshold -- Side-mode suppression ratio (SMR) -- Turn-on delay -- Small-signal modulation response -- Laser noises -- Relative intensity noise (RIN) -- Phase noise -- Mode partition noise -- 1.2.7. Single-frequency semiconductor lasers -- 1.2.7.1. DFB laser diode -- 1.2.7.2. External cavity laser diode -- 1.2.7.3. Integrated tunable lasers -- 1.3. Photodetectors -- 1.3.1. Pn-junction photodiodes -- 1.3.2. Responsivity and bandwidth -- 1.3.3. Electrical characteristics of a photodiode -- 1.3.4. Photodetector noise and SNR -- 1.3.4.1. Noise-equivalent power (NEP) -- 1.3.5. Avalanche photodiodes (APDs) -- 1.3.6. APD used as single photon detectors -- 1.4. Optical fibers -- 1.4.1. Reflection and refraction -- 1.4.1.1. Fresnel reflection coefficients -- 1.4.1.2. Special cases -- Normal incidence -- Critical angle -- 1.4.1.3. Optical field phase shift between the incident and the reflected beams -- 1.4.1.4. Brewster angle (total transmission ρ=0) -- 1.4.2. Propagation modes in optical fibers -- 1.4.2.1. Geometric optics analysis -- 1.4.2.2. Mode analysis using electromagnetic field theory -- 1.4.2.3. Numerical aperture -- 1.4.3. Optical fiber attenuation.
  • 1.4.4. Group velocity and dispersion -- 1.4.4.1. Phase velocity and group velocity -- 1.4.4.2. Group velocity dispersion -- 1.4.4.3. Sources of chromatic dispersion -- 1.4.4.4. Modal dispersion -- 1.4.4.5. Polarization mode dispersion (PMD) -- 1.4.5. Nonlinear effects in an optical fiber -- 1.4.5.1. Stimulated Brillouin scattering -- 1.4.5.2. Stimulated Raman scattering -- 1.4.5.3. Kerr effect nonlinearity and nonlinear Schrödinger equation -- 1.5. Optical amplifiers -- 1.5.1. Optical gain, gain bandwidth, and saturation -- 1.5.2. Semiconductor optical amplifiers -- 1.5.2.1. Steady-state analysis -- 1.5.2.2. Gain dynamics of OSA -- Optical wavelength conversion using cross-gain saturation -- Wavelength conversion using FWM in SOA -- Optical phase modulation in an SOA -- 1.5.3. Erbium-doped fiber amplifiers (EDFAs) -- 1.5.3.1. Absorption and emission cross sections -- 1.5.3.2. Rate equations -- 1.5.3.3. EDFA design considerations -- Forward pumping and backward pumping -- EDFAs with AGC and APC -- 1.5.3.4. EDFA gain flattening -- 1.5.4. Raman amplification in optical fiber -- 1.6. External electro-optic modulator -- 1.6.1. Basic operation principle of electro-optic modulators -- 1.6.2. Frequency doubling and duobinary modulation -- 1.6.3. Optical single-side modulation -- 1.6.4. I/Q modulation of complex optical field -- 1.6.5. Bias point stabilization of an I/Q modulator -- 1.6.6. Optical modulators using electro-absorption effect -- References -- Chapter 2: Basic mechanisms and instrumentation for optical measurement -- 2.1. Introduction -- 2.2. Grating-based optical spectrum analyzers -- 2.2.1. General specifications -- 2.2.2. Fundamentals of diffraction gratings -- 2.2.2.1. Measure the diffraction angle spreading when the input only has a single frequency.
  • 2.2.2.2. Sweep the signal wavelength while measuring the output at a fixed diffraction angle -- 2.2.3. Basic OSA configurations -- 2.2.3.1. OSA based on a double monochromator -- 2.2.3.2. OSA with polarization sensitivity compensation -- 2.2.3.3. Consideration of focusing optics -- 2.2.3.4. Optical spectral meter using photodiode array -- 2.3. Scanning FP interferometer -- 2.3.1. Basic FPI configuration and transfer function -- 2.3.1.1. Free spectral range (FSR) -- 2.3.1.2. Half-power bandwidth (HPBW) -- 2.3.1.3. Finesse -- 2.3.1.4. Contrast -- 2.3.2. Scanning FPI spectrum analyzer -- 2.3.3. Scanning FPI basic optical configurations -- 2.3.4. Optical spectrum analyzer using the combination of grating and FPI -- 2.4. Mach-Zehnder interferometers -- 2.4.1. Transfer matrix of a 2x2 optical coupler -- 2.4.2. Transfer function of an MZI -- 2.4.3. MZI used as an optical filter -- 2.5. Michelson interferometers -- 2.5.1. Operating principle of a Michelson interferometer -- 2.5.2. Measurement and characterization of Michelson interferometers -- 2.5.3. Sagnac loop mirror -- 2.6. Optical wavelength meter -- 2.6.1. Operating principle of a wavelength meter based on Michelson interferometer -- 2.6.2. Wavelength coverage and spectral resolution -- 2.6.2.1. Wavelength coverage -- 2.6.2.2. Spectral resolution -- 2.6.2.3. Effect of signal coherence length -- 2.6.3. Wavelength calibration -- 2.6.4. Wavelength meter based on Fizeau wedge interferometer -- 2.7. Optical ring resonators and their applications -- 2.7.1. Ring resonator power transfer function and Q-factor -- 2.7.2. Ring resonators as tunable optical filters -- 2.7.3. Label-free biosensors based on high-Q ring resonators -- 2.7.4. Electro-optic modulators based on ring resonators -- 2.8. Optical polarimeter -- 2.8.1. General description of lightwave polarization.
  • 2.8.2. The stokes parameters and the Poincare sphere -- 2.8.3. Optical polarimeters -- 2.9. Measurement based on coherent optical detection -- 2.9.1. Operating principle -- 2.9.2. Receiver SNR calculation of coherent detection -- 2.9.2.1. Heterodyne and homodyne detection -- 2.9.2.2. Signal-to-noise ratio in coherent detection receivers -- 2.9.3. Balanced coherent detection and polarization diversity -- 2.9.4. Phase diversity in coherent homodyne detection -- 2.9.5. Coherent OSA based on swept frequency laser -- 2.10. Waveform measurement -- 2.10.1. Oscilloscope operating principle -- 2.10.2. Digital sampling oscilloscopes -- 2.10.3. High speed real-time digital analyzer -- 2.10.4. High-speed sampling of optical signal -- 2.10.4.1. Nonlinear optical sampling -- 2.10.4.2. Linear optical sampling -- 2.10.4.3. Sampling oscilloscope base on single-photon detection -- 2.10.4.4. High-speed electric ADC using optical techniques -- 2.10.5. Short optical pulse measurement using an autocorrelator -- 2.11. LIDAR and OCT -- 2.11.1. Light detection and ranging (LIDAR) -- 2.11.1.1. Pulsed LIDAR with direct detection -- 2.11.1.2. FMCW LIDAR and pulse compression -- 2.11.2. OCT -- 2.12. Optical network analyzer -- 2.12.1. S-Parameters and RF network analyzer -- 2.12.2. Optical network analyzers -- 2.12.2.1. Scalar optical network analyzer -- 2.12.2.2. Vector optical network analyzer -- References -- Chapter 3: Characterization of optical devices -- 3.1. Introduction -- 3.2. Characterization of RIN, linewidth, and phase noise of semiconductor lasers -- 3.2.1. Measurement of relative intensity noise (RIN) -- 3.2.2. Measurement of laser linewidth and phase noise -- 3.2.2.1. Self-homodyne and self-heterodyne detection -- 3.2.2.2. Coherent envelope detection and complex optical field detection -- 3.2.2.3. Non-Lorentzian phase noise and Lorentzian-equivalent linewidth.
  • 3.2.3. Multi-heterodyne technique to characterize spectral properties of semiconductor laser frequency combs -- 3.3. Measurement of electro-optic modulation response -- 3.3.1. Characterization of intensity modulation response -- 3.3.1.1. Frequency-domain characterization -- 3.3.1.2. Time-domain characterization -- 3.3.2. Measurement of frequency chirp -- 3.3.2.1. Modulation spectral measurement -- 3.3.2.2. Measurement utilizing fiber dispersion -- 3.3.3. Time-domain measurement of modulation-induced chirp -- 3.4. Wideband characterization of an optical receiver -- 3.4.1. Characterization of photodetector responsivity and linearity -- 3.4.2. Frequency domain characterization of photodetector response -- 3.4.3. Photodetector bandwidth characterization using source spontaneous-spontaneous beat noise -- 3.4.4. Photodetector characterization using short optical pulses -- 3.5. Characterization of optical amplifiers -- 3.5.1. Measurement of amplifier optical gain -- 3.5.2. Measurement of static and dynamic gain tilt -- 3.5.2.1. Static gain tilt -- 3.5.2.2. Dynamic gain tilt -- 3.5.3. Optical amplifier noise -- 3.5.4. Optical domain characterization of ASE noise -- 3.5.5. Impact of ASE noise in electrical domain -- 3.5.5.1. Signal-spontaneous emission beat noise -- 3.5.5.2. Spontaneous-spontaneous beat noise spectral density -- 3.5.6. Noise figure definition and its measurement -- 3.5.6.1. Noise figure definition -- 3.5.6.2. Optical domain measurement of noise figure -- 3.5.6.3. Electrical domain characterization of a noise figure -- 3.5.7. Time-domain characteristics of EDFA -- 3.5.8. Characterization of fiber Raman amplification -- 3.5.8.1. Noise characteristics of Raman amplifiers -- 3.5.8.2. Forward/backward hybrid pumping and 2nd-order pumping -- 3.5.8.3. RIN transfer from the pump to the optical signal.
  • 3.5.8.4. Characterization of fiber Raman amplifiers.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 0-323-91553-1, 9780323909570
Titel-ID: 9925112067406463
Format
1 online resource (846 pages)
Schlagworte
Fiber optics