Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 3

Details

Autor(en) / Beteiligte
Titel
Design for sustainability : green materials and processes
Ort / Verlag
Amsterdam, Netherlands ; : Elsevier,
Erscheinungsjahr
[2021]
Link zum Volltext
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Front Cover -- Design for Sustainability -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- Acknowledgments -- I. Design methods -- 1 "Green" conceptual design toward design for environmental sustainability -- 1.1 Introduction -- 1.2 Conceptual design and design for environmental sustainability -- 1.2.1 Proposed guidelines and strategies toward design for environmental sustainability to be implemented in conceptual design -- 1.3 Renewable materials: Biocomposites -- 1.3.1 Renewable and biodegradable materials: Fully degradable biopolymer composites -- 1.4 Biocomposites: "Green" concept generation and evaluation -- 1.5 Conclusions -- Acknowledgments -- References -- 2 Conceptual design development and selection of green product -- 2.1 Introduction to conceptual design in design for sustainability -- 2.2 Framework of conceptual design and selection process in green product development -- 2.3 Conceptual design development process -- 2.4 Conceptual design selection process -- 2.5 Case study on the conceptual design development of a green product -- 2.5.1 Product design specification -- 2.5.2 Conceptual design development using TRIZ -- 2.5.3 Weighting of criteria using the entropy method -- 2.5.4 Conceptual design selection process using VIKOR -- 2.6 Conclusion and future directions in the conceptual design of green products -- Acknowledgment -- References -- 3 Sustainable materials selection: principles and applications -- 3.1 Introduction to materials selection in design for sustainability -- 3.2 Overview of multiple criteria decision-making for materials selection -- 3.2.1 Screening -- 3.2.2 Ranking process using the multiple criteria decision-making method -- 3.3 Weight determination on criteria for the multiple criteria decision-making method -- 3.4 Materials selection for green composites product development.
  • 3.4.1 Natural fiber materials selection -- 3.4.2 Matrix materials selection -- 3.4.3 Natural fiber composite materials selection -- 3.5 Case study: natural fiber composite materials selection using a TOPSIS method -- 3.5.1 Final materials selection results and discussion -- 3.6 Conclusion -- Acknowledgment -- References -- 4 Implementation of design for sustainability in developing trophy plaque using green kenaf polymer composites -- 4.1 Introduction -- 4.2 Product development of kenaf composite trophy plaque using DfS approach -- 4.2.1 Product background and market investigation -- 4.2.2 Product design specification -- 4.2.3 Conceptual design development of kenaf composites trophy plaque -- 4.2.3.1 Generating a conceptual design using the brainstorming method -- 4.2.3.2 Conceptual design selection using the Pugh selection method -- 4.2.4 Materials selection -- 4.2.5 Detailed design of kenaf composites trophy plaque -- 4.2.6 Kenaf composites trophy plaque fabrication -- 4.2.6.1 Mold fabrication -- 4.2.6.2 Composites trophy plaque fabrication -- 4.3 Conclusions -- Acknowledgments -- References -- 5 Dynamic analysis of a laminated rubber-metal spring vibration isolator for sustainable design -- 5.1 Introduction -- 5.2 Mathematical modeling method of a laminated rubber-metal spring -- 5.2.1 Internal resonance in the longitudinal direction -- 5.2.2 Lumped parameter system -- 5.2.3 Wave and mass effect in a finite rod -- 5.3 Results and discussion -- 5.3.1 Mathematical modeling results of a laminated rubber-metal spring model -- 5.3.2 Results and discussion on the laminated rubber-metal spring model -- 5.4 Conclusions -- Acknowledgment -- References -- 6 Design for sustainability integration in education -- 6.1 Introduction -- 6.2 Concept of sustainable design and sustainable development in education.
  • 6.3 Sustainable design and development: teaching methods and approaches in higher education -- 6.4 Embedding the design for sustainability concept into education: example of practices in a higher education institution -- 6.4.1 Experiential learning of design for sustainability: design of a floating wetland product for the Riverdale Project -- 6.4.2 Creating awareness of a sustainable design solution through social media video development: plastic recycling and sol... -- 6.4.3 Student-community-based activities on the product end-of-life stage: solid waste separation and recycling campaign -- 6.5 Challenges of integrating the sustainable design concept in higher education -- 6.5.1 Policy -- 6.5.2 Educator -- 6.5.3 Learning environment -- 6.5.4 Economy -- 6.5.5 Classroom activities -- 6.6 Conclusions -- Acknowledgment -- References -- II. Green materials -- 7 A review of natural fiber reinforced recycled thermoplastic polymer composites -- 7.1 Introduction -- 7.2 Natural fibers -- 7.2.1 Celluloses -- 7.2.2 Hemicelluloses -- 7.2.3 Lignin -- 7.3 Recycled plastic as an alternative to virgin plastic -- 7.4 Recycled plastic applications in natural fiber composites -- 7.4.1 Recycled polystyrene-based composites -- 7.4.2 Recycled polypropylene-based composites -- 7.4.3 Recycled polyethylene-based composites -- 7.5 Natural fiber reinforced recycled polymer blend composites -- 7.5.1 Recycled industrial and municipal plastics-based composites -- 7.5.2 Recycled polypropylene/polyethylene-based composites -- 7.5.3 Recycled low-density polyethylene/high-density polyethylene/polypropylene-based composites -- 7.5.4 Recycled high-density polyethylene/polyethylene terephthalate-based composites -- 7.6 Conclusions -- Acknowledgment -- References -- 8 Degradable composites: processes and applications -- 8.1 Introduction -- 8.2 Degradable composites system.
  • 8.2.1 Matrices -- 8.2.2 Reinforcements -- 8.2.3 Celluloses -- 8.3 Synthesis and fabrication process -- 8.4 Degradability of composites -- 8.5 Applications of degradable composites -- 8.5.1 Degradable composites for domestic use -- 8.5.2 Degradable composites for biomedical applications -- 8.6 Conclusions -- Acknowledgments -- References -- 9 Thermoplastic starch as renewable plastics -- 9.1 Introduction -- 9.2 Biopolymers -- 9.2.1 Starch -- 9.2.2 Cellulose -- 9.2.3 Synthetic biopolymers -- 9.3 Natural fiber composites -- 9.4 Starch-based composites -- 9.5 Polymerization of thermoplastic starch -- 9.6 Thermoplastic cassava starch -- 9.7 Thermoplastic rice starch -- 9.8 Thermoplastic cornstarch -- 9.9 Thermoplastic potato starch -- 9.10 Thermoplastics from various sources -- 9.11 Conclusions -- Acknowledgment -- References -- 10 Composites leading to a clean and green future -- 10.1 Introduction -- 10.2 Composite processing, types, and their environmental applications -- 10.3 Classification of composites -- 10.3.1 Classification of composites based on matrices -- 10.3.1.1 Classification based on metal matrices -- 10.3.1.2 Classification based on polymer matrices -- 10.3.1.3 Classification based on ceramic matrices -- 10.3.2 Classification of composites based on reinforcement -- 10.3.2.1 Fiber reinforced composites -- 10.3.2.2 Particle reinforced composites -- 10.3.2.3 Structural reinforced composites -- 10.4 Recent advancements in composites -- 10.4.1 Biomaterials -- 10.5 Composites applied in different environmental applications -- 10.5.1 Composites for eco-friendly engineering applications -- 10.5.1.1 Composites employed in greenhouses -- 10.5.1.2 Composites employed as sound absorbers -- 10.5.1.3 Composites employed in wind turbines for renewable energy -- 10.5.1.4 Composites employed in construction.
  • 10.5.1.5 Composites employed in marine environments -- 10.5.1.6 Composites employed in aerospace -- 10.5.1.7 Composites employed in solar panels -- 10.5.2 Composites developed from food wastes -- 10.5.2.1 Vegetable waste -- 10.5.2.2 Fruit waste -- 10.5.2.3 Coffee and tea waste -- 10.5.2.4 Animal-based food waste -- 10.5.2.5 Food grain waste -- 10.5.3 Magnetic composites as environmental superadsorbents for dye separation -- 10.5.3.1 Application of magnetic composites as dye adsorbents -- 10.5.3.2 Application of magnetic nanocomposites as dye adsorbents -- 10.6 Conclusion -- Acknowledgments -- References -- Further reading -- 11 A comprehensive review of natural fiber reinforced polymer biocomposites and their applications -- 11.1 Introduction -- 11.2 Extraction of natural fibers/different sources of natural fibers -- 11.3 Comparison between neat polypropylene and natural fiber/polypropylene composites -- 11.4 The effects of coupling agent and chemical treatment -- 11.5 The influence of natural fiber loading on the composites -- 11.6 Various applications of natural fiber reinforced PP -- 11.7 Conclusion -- Acknowledgments -- References -- 12 Electrospinning process for green polymeric nanomaterials -- 12.1 Introduction -- 12.2 Electrospinning process -- 12.3 Green nanofibers using the electrospinning process -- 12.3.1 Electrospinning of cellulose -- 12.3.2 Electrospinning of chitin and chitosan -- 12.3.3 Electrospinning of lignin -- 12.3.4 Electrospinning of protein -- 12.3.5 Electrospinning of synthetic biopolymers -- 12.4 The advantages of the electrospinning process -- 12.5 Current issues and recommendations -- 12.6 Conclusions -- Acknowledgments -- References -- 13 Recent development in kenaf (Hibiscus cannabinus)-based biocomposites and their potential industrial applications: A review -- 13.1 Introduction to natural fiber.
  • 13.2 Classification of natural fibers.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 0-12-819442-1
OCLC-Nummer: 1242027370
Titel-ID: 9925022567906463
Format
1 online resource (499 pages) :; illustrations
Schlagworte
Sustainable design, Manufacturing processes, Materials