Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Unified power flow controller technology and application
Ort / Verlag
London, England : Academic Press,
Erscheinungsjahr
2017
Link zum Volltext
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Front Cover -- Unified Power Flow Controller Technology and Application -- Copyright Page -- Writing Group -- Contents -- 1 Summary -- 1.1 The Development Process of FACTS Technology -- 1.1.1 The Background of FACTS Technology -- 1.1.1.1 The objective needs of grid operation control -- 1.1.1.2 The inevitable development trend of power electronics technology -- 1.1.2 The Power Electronics of FACTS -- 1.1.2.1 Semi-controlled devices -- 1.1.2.2 Fully-controlled devices -- 1.1.3 Typical FACTS Device Classification and Principle -- 1.1.3.1 Shunt FACTS -- 1.1.3.2 Series FACTS -- 1.1.3.3 Hybrid FACTS -- 1.1.4 The Application of FACTS in a Power System -- 1.1.4.1 Increasing transmission line capacity -- 1.1.4.2 Provision of reactive power and voltage support -- 1.1.4.3 Improving transient stability -- 1.1.4.4 Modern large interconnected power grid -- 1.1.5 The Concept of the UPFC -- 1.2 Present Research Situation of the UPFC -- 1.2.1 The Topology of a UPFC Converter -- 1.2.1.1 Series connection technology of GTO -- 1.2.1.2 Three-level converter technology -- 1.2.1.3 Multiplex technique -- 1.2.2 The Modeling of UPFCs -- 1.2.3 The Control Strategy of the UPFC -- 1.2.4 Optimization of UPFCs -- References -- 2 Principles and functions of UPFC -- 2.1 Technical Principle of the UPFC -- 2.1.1 System Architecture of the UPFC -- 2.1.2 The Principle of the UPFC -- 2.2 UPFC Control Function Analysis -- 2.2.1 Control Function of the Shunt Side -- 2.2.1.1 Reactive power control mode -- 2.2.1.2 Node voltage control mode -- 2.2.2 Control Function of Series Side -- 2.2.2.1 Series compensation -- 2.2.2.2 Phase shifting effect -- 2.2.2.3 Terminal voltage regulation -- 2.2.2.4 Comprehensive functionality -- 2.3 UPFC Optimization Function in Power Network -- 2.3.1 Selection of UPFC Installation Location -- 2.3.1.1 Using the experience of experts -- 2.3.1.2 Heuristic method.
  • 2.3.1.3 Mathematical analysis -- 2.3.2 UPFC Capacity Determination -- 2.3.2.1 Modeling method -- 2.3.2.2 Optimization method -- References -- 3 The key devices of unified power flow controller -- 3.1 Converter -- 3.1.1 High Voltage and Large Power Electronic Technology -- 3.1.1.1 Device direct series/parallel connection technology -- 3.1.1.2 Three-level technology -- 3.1.1.3 Multiplex technology -- 3.1.1.4 Cascaded multilevel technology -- 3.1.2 State Analysis of MMC Structure Submodule -- 3.1.3 MMC Modulation Technology -- 3.1.3.1 Carrier phase shift sinusoidal pulse width modulation (CPS-SPWM) -- 3.1.3.2 The nearest voltage level modulation technology -- 3.2 Bridge Arm Reactor -- 3.2.1 The Function of the Bridge Arm Reactor -- 3.2.2 Parameter Calculation of the Bridge Arm Reactor -- 3.3 Starting Resistance at Parallel Side -- 3.3.1 The Principle of Starting Resistance -- 3.3.2 The Parameter Design of Starting Resistance -- 3.4 Series Transformer -- 3.4.1 Characteristics of Series Transformers -- 3.4.1.1 Winding connection mode -- 3.4.1.2 Short-circuit impedance -- 3.4.1.3 Insulation level -- 3.4.1.4 Over-excitation tolerance -- 3.4.2 Parameter Design of Series Transformer -- 3.4.2.1 Parameter design rule -- 3.4.2.2 Parameter design method -- 3.4.2.2.1 Rated voltage -- 3.4.2.2.2 Rated current and rated capacity -- 3.5 Shunt Transformer -- 3.5.1 Characteristics of Shunt Transformer -- 3.5.1.1 Winding connection -- 3.5.1.2 Short-circuit impedance -- 3.5.2 Calculation of Basic Parameters of Shunt Transformer -- 3.5.2.1 Principle of parameter calculation -- 3.5.2.2 Parameter design method -- 3.6 DC Field Equipment -- 3.6.1 DC Current Measuring Device -- 3.6.1.1 Magnetic balance DC-current transducer -- 3.6.1.2 Optical DC current transducer -- 3.6.2 DC Voltage Measuring Device.
  • 3.6.2.1 DC-voltage transducer based on the principle of the DC-current transducer -- 3.6.2.2 DC-voltage transducer composed of a resistance voltage divider and a DC amplifier -- 3.6.2.3 DC post insulator -- 3.6.2.4 DC lightning arrester -- 3.6.2.5 DC isolating switch and grounding switch -- 3.7 Thyristor Bypass Switch -- 3.7.1 Basic Principle of Thyristor Bypass Switch -- 3.7.2 The Parameters of the TBS Circuit -- 3.7.2.1 Voltage margin coefficient -- 3.7.2.2 Current margin coefficient -- 3.7.2.3 Damping capacity -- 3.7.2.4 Damping resistance -- 3.7.2.5 Static voltage-sharing resistance -- 3.7.2.6 Saturated reactor -- 3.8 Converter Valve Cooling System -- 3.8.1 Internal Cooling Water System -- 3.8.2 External Cooling Water System -- References -- Further Reading -- 4 UPFC control and protection system -- 4.1 Control Strategy of the UPFC -- 4.1.1 UPFC Basic Control Strategy -- 4.1.1.1 UPFC mathematical model under synchronous rotating coordinate -- 4.1.1.1.1 Mathematical model of the shunt converter -- 4.1.1.1.2 Mathematical model of series converter -- 4.1.1.1.3 Mathematical model of DC link -- 4.1.1.2 UPFC control strategy of d-q decoupling -- 4.1.1.2.1 Control strategy of shunt converter -- 4.1.1.2.2 Control strategy of the series converter -- 4.1.2 Circulating Current Suppression -- 4.1.2.1 MMC circulation mechanism -- 4.1.2.2 MMC circulating current suppression strategy -- 4.1.3 MMC Submodule Capacitor Voltage Balance Control -- 4.1.3.1 Submodule capacitor voltage balance control strategy -- 4.1.3.2 Submodule capacitance transient voltage fluctuation and its inhibition -- 4.1.4 UPFC Start Control Strategy -- 4.1.4.1 Noncontrolled rectifier charging phase -- 4.1.4.1.1 The charging process of the shunt converter -- 4.1.4.1.2 The charging process of the series converter -- 4.1.4.2 Submodule voltage control of shunt converter.
  • 4.1.4.3 Controlled rectifier charging phase -- 4.2 UPFC Protection Strategy -- 4.2.1 UPFC Common Fault Analysis -- 4.2.1.1 Disturbance or fault in external AC system -- 4.2.1.1.1 AC voltage imbalance -- 4.2.1.1.2 AC voltage phase shift -- 4.2.1.1.3 AC frequency exception -- 4.2.1.1.4 AC under voltage and overvoltage -- 4.2.1.2 UFPC station internal fault -- 4.2.1.2.1 AC bus fault inside the station -- 4.2.1.2.2 Fault on DC side -- 4.2.1.2.3 Converter valve fault -- 4.2.1.2.4 Connection transformer fault -- 4.2.2 Protection Configuration and Principles of UPFC -- 4.2.2.1 AC zone protection -- 4.2.2.2 Transformer AC bus zone protection -- 4.2.2.3 Converter zone protection -- 4.2.2.4 DC zone protection -- 4.3 Control Protection System -- 4.3.1 UPFC Control System -- 4.3.1.1 System-level control -- 4.3.1.1.1 Coordinated control between stations -- 4.3.1.1.2 Multicircuit lines power coordination control -- 4.3.1.1.3 The coordination control between converters -- 4.3.1.2 Converter-level control -- 4.3.1.3 Control mode and operating mode switching -- 4.3.1.4 Basic control -- 4.3.1.4.1 Shunt transformer tap control -- 4.3.1.4.2 Unlocking and locking of the UPFC system -- 4.3.1.4.3 Fault and abnormality control -- 4.3.1.5 Additional control -- 4.3.1.5.1 Power decrease control -- 4.3.1.5.2 Power increase control -- 4.3.1.5.3 Abnormal AC voltage control -- 4.3.1.6 Control system self-diagnosis -- 4.3.2 UPFC Protection System -- 4.3.2.1 Design principles of protection system -- 4.3.2.2 Redundancy configuration -- 4.3.2.2.1 One out of two and two out of two redundancy mode -- 4.3.2.2.2 Two out of three redundancy mode -- 4.3.2.2.3 Two out of four redundancy mode -- 4.3.2.2.4 Full dual redundancy mode -- 4.3.2.3 Protection action strategy -- 4.4 Control Strategy of UPFC to Improve System Stability.
  • 4.4.1 Control Strategy of UPFC to Improve the System's Transient Stability -- 4.4.2 Control Strategy of UPFC to Improve the System's Damping -- 4.4.3 Control Strategy of UPFC to Mitigate SSO -- References -- Further Reading -- 5 Modeling and simulation techniques of UPFC -- 5.1 Steady-State Modeling Method of UPFC -- 5.1.1 Comprehensive Model of UPFC -- 5.1.2 Decoupled Model of UPFC -- 5.1.3 Load Injection Model of UPFC -- 5.2 Electromechanical Transient Modeling Method of UPFC -- 5.2.1 Electromechanical Transient Modeling for the UPFC Electric Component -- 5.2.2 Electromechanical Transient Modeling for the UPFC Controller -- 5.3 Modeling and Simulation Techniques of the UPFC -- 5.3.1 Mathematical Transient Model of the MMC -- 5.3.2 UPFC Electromagnetic Transient Modeling and Simulation -- 5.3.2.1 PSCAD/EMTDC-based electromagnetic transient modeling technique for an MMC-type UPFC -- 5.3.2.2 PSCAD/EMTDC-based electromagnetic transient modeling methodology for UPFC -- 5.3.2.3 Fast MMC electromagnetic transient simulation methodology -- 5.3.2.3.1 MMC fast model classification -- 5.3.2.3.1.1 MMC accurate equivalent model commonly has three types -- 5.3.2.3.1.2 MMC simplified model -- 5.3.2.3.2 Decoupling approach-based electromagnetic transient speed-up model -- 5.3.2.3.2.1 MMC bridge arm equivalence -- 5.3.2.3.2.2 MMC sub-module equivalence -- 5.3.2.3.2.3 MMC bridge-arm and submodule decoupling -- 5.3.2.3.3 Thevenin-equivalent model for the MMC converter -- 5.3.3 UPFC Real-Time Digital Simulation -- 5.3.3.1 UPFC RTDS modeling and simulation -- 5.3.3.1.1 Small-step RTDS simulation -- 5.3.3.1.1.1 Converter model in an RTDS -- 5.3.3.2 RTDS-based UPFC real-time digital closed-loop simulation system -- 5.3.3.2.1 MMC FPGA platform -- 5.3.3.2.2 RTDS-based MMC real-time digital closed-loop simulation system modeling.
  • 5.3.3.3 RTDS-based UPFC real-time simulation modeling.
  • Principles and functions of UPFC -- The key devices of unified power flow controller -- UPFC control and protection system -- Modeling and simulation techniques of UPFC -- Overvoltage and insulation coordination of UPFC -- Test technology for UPFC -- Foreign UPFC projects -- The domestic application of UPFC.
  • Description based on online resource; title from PDF title page (ebrary, viewed July 15, 2017).
Sprache
Identifikatoren
ISBN: 0-12-813486-0
Titel-ID: 9925021295906463
Format
1 online resource (329 pages)
Schlagworte
Automatic control, Electric power distribution