Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 28

Details

Autor(en) / Beteiligte
Titel
Activating Mutations Affecting the Dbl Homology Domain of SOS2 Cause Noonan Syndrome
Ist Teil von
  • Human mutation, 2015-11, Vol.36 (11), p.1080-1087
Ort / Verlag
United States: Blackwell Publishing Ltd
Erscheinungsjahr
2015
Quelle
Wiley Online Library - AutoHoldings Journals
Beschreibungen/Notizen
  • ABSTRACT The RASopathies constitute a family of autosomal‐dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal‐regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering Son of Sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease‐causing mutations affected three conserved residues located in the Dbl homology (DH) domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its autoinhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS‐causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the DH domain. Noonan syndrome‐causing mutations alter the Dbl homology domain (DH, shown as ribbon), altering its interaction with the RAS exchange motif, colored by its electrostatic potential. The mutated residue in the DH domain are colored red.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX