Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 10039

Details

Autor(en) / Beteiligte
Titel
Continuous constant potential model for describing the potential-dependent energetics of CO2RR on single atom catalysts
Ist Teil von
  • The Journal of chemical physics, 2023-09, Vol.159 (9)
Ort / Verlag
Melville: American Institute of Physics
Erscheinungsjahr
2023
Link zum Volltext
Quelle
AIP Journals
Beschreibungen/Notizen
  • In this work, we have proposed a Continuous Constant Potential Model (CCPM) based on grand canonical density functional theory for describing the electrocatalytic thermodynamics on single atom electrocatalysts dispersed on graphene support. The linearly potential-dependent capacitance is introduced to account for the net charge variation of the electrode surface and to evaluate the free energetics. We have chosen the CO2 electro-reduction reaction on single-copper atom catalysts, dispersed by nitrogen-doped graphene [CuNX@Gra (X = 2, 4)], as an example to show how our model can predict the potential-dependent free energetics. We have demonstrated that the net charges of both catalyst models are quadratically correlated with the applied potentials and, thus, the quantum capacitance is linearly dependent on the applied potentials, which allows us to continuously quantify the potential effect on the free energetics during the carbon dioxide reduction reaction instead of confining it to a specific potential. On the CuN4@Gra model, it is suggested that CO2 adsorption, coupled with an electron transfer, is a potential determining step that is energetically unfavorable even under high overpotentials. Interestingly, the hydrogen adsorption on CuN4@Gra is extremely easy to occur at both the Cu and N sites, which probably results in the reconstruction of the CuN4@Gra catalyst, as reported by many experimental observations. On CuN2@Gra, the CO2RR is found to exhibit a higher activity at the adjacent C site, and the potential determining step is shifted to the *CO formation step at a wide potential range. In general, CCPM provides a simple method for studying the free energetics for the electrocatalytic reactions under constant potential.
Sprache
Englisch
Identifikatoren
ISSN: 0021-9606
eISSN: 1089-7690
DOI: 10.1063/5.0164869
Titel-ID: cdi_scitation_primary_10_1063_5_0164869

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX