Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 8795

Details

Autor(en) / Beteiligte
Titel
Surface Chemistry Enhancements for the Tunable Super-Liquid Repellency of Low-Surface-Tension Liquids
Ist Teil von
  • Nano letters, 2019-03, Vol.19 (3), p.1892-1901
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2019
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Super-hydrophobic, super-oleo­(amphi)­phobic, and super-omniphobic materials are universally important in the fields of science and engineering. Despite rapid advancements, gaps of understanding still exist between each distinctive wetting state. The transition of super-hydrophobicity to super-(oleo-, amphi-, and omni-)­phobicity typically requires the use of re-entrant features. Today, re-entrant geometry induced super-(amphi- and omni-)­phobicity is well-supported by both experiments and theory. However, owing to geometrical complexities, the concept of re-entrant geometry forms a dogma that limits the industrial progress of these unique states of wettability. Moreover, a key fundamental question remains unanswered: are extreme surface chemistry enhancements able to influence super-liquid repellency? Here, this was rigorously tested via an alternative pathway that does not require explicit designer re-entrant features. Highly controllable and tunable vertical network polymerization and functionalization were used to achieve fluoroalkyl densification on nanoparticles. For the first time, relative fluoro-functionalization densities are quantitatively tuned and correlated to super-liquid repellency performance. Step-wise tunable super-amphiphobic nanoparticle films with a Cassie–Baxter state (contact angle of >150° and sliding angle of <10°) against various liquids is demonstrated. This was tested down to very low surface tension liquids to a minimum of ca. 23.8 mN/m. Such findings could eventually lead to the future development of super-(amphi)­omniphobic materials that transcend the sole use of re-entrant geometry.
Sprache
Englisch
Identifikatoren
ISSN: 1530-6984
eISSN: 1530-6992
DOI: 10.1021/acs.nanolett.8b04972
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_6728126
Format
Schlagworte
Letter

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX