Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 2

Details

Autor(en) / Beteiligte
Titel
Radiation-Induced Micro-RNA Expression Changes in Peripheral Blood Cells of Radiotherapy Patients
Ist Teil von
  • International journal of radiation oncology, biology, physics, 2011-06, Vol.80 (2), p.549-557
Ort / Verlag
New York, NY: Elsevier Inc
Erscheinungsjahr
2011
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • Purpose MicroRNAs (miRNAs), a class of noncoding small RNAs that regulate gene expression, are involved in numerous physiologic processes in normal and malignant cells. Our in vivo study measured miRNA and gene expression changes in human blood cells in response to ionizing radiation, to develop miRNA signatures that can be used as biomarkers for radiation exposure. Methods and Materials Blood from 8 radiotherapy patients in complete remission 1 or 2 was collected immediately before and 4 hours after total body irradiation with 1.25 Gy x-rays. Both miRNA and gene expression changes were measured by means of quantitative polymerase chain reaction and microarray hybridization, respectively. Hierarchic clustering, multidimensional scaling, class prediction, and gene ontology analysis were performed to investigate the potential of miRNAs to serve as radiation biomarkers and to elucidate their likely physiologic roles in the radiation response. Results The expression levels of 45 miRNAs were statistically significantly upregulated 4 hours after irradiation with 1.25 Gy x-rays, 27 of them in every patient. Nonirradiated and irradiated samples form separate clusters in hierarchic clustering and multidimensional scaling. Out of 223 differentially expressed genes, 37 were both downregulated and predicted targets of the upregulated miRNAs. Paired and unpaired miRNA-based classifiers that we developed can predict the class membership of a sample with unknown irradiation status, with accuracies of 100% when all 45 upregulated miRNAs are included. Both miRNA control of and gene involvement in biologic processes such as hemopoiesis and the immune response are increased after irradiation, whereas metabolic processes are underrepresented among all differentially expressed genes and the genes controlled by miRNAs. Conclusions Exposure to ionizing radiation leads to the upregulation of the expression of a considerable proportion of the human miRNAome of peripheral blood cells. These miRNA expression signatures can be used as biomarkers of radiation exposure.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX