Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 189

Details

Autor(en) / Beteiligte
Titel
Characterization of the Dynamics of an Essential Helix in the U1A Protein by Time-Resolved Fluorescence Measurements
Ist Teil von
  • The journal of physical chemistry. B, 2008-05, Vol.112 (19), p.6122-6130
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2008
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The RNA recognition motif (RRM), one of the most common RNA-binding domains, recognizes single-stranded RNA. A C-terminal helix that undergoes conformational changes upon binding is often an important contributor to RNA recognition. The N-terminal RRM of the U1A protein contains a C-terminal helix (helix C) that interacts with the RNA-binding surface of a β-sheet in the free protein (closed conformation), but is directed away from this β-sheet in the complex with RNA (open conformation). The dynamics of helix C in the free protein have been proposed to contribute to binding affinity and specificity. We report here a direct investigation of the dynamics of helix C in the free U1A protein on the nanosecond time scale using time-resolved fluorescence anisotropy. The results indicate that helix C is dynamic on a 2−3 ns time scale within a 20° range of motion. Steady-state fluorescence experiments and molecular dynamics simulations suggest that the dynamical motion of helix C occurs within the closed conformation. Mutation of a residue on the β-sheet that contacts helix C in the closed conformation dramatically destabilizes the complex (Phe56Ala) and alters the steady-state fluorescence, but not the time-resolved fluorescence anisotropy, of a Trp in helix C. Mutation of Asp90 in the hinge region between helix C and the remainder of the protein to Ala or Gly subtly alters the dynamics of the U1A protein and destabilizes the complex. Together these results show that helix C maintains a dynamic closed conformation that is stable to these targeted protein modifications and does not equilibrate with the open conformation on the nanosecond time scale.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX