Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 5089

Details

Autor(en) / Beteiligte
Titel
Erectile dysfunction in mice lacking the large-conductance calcium-activated potassium (BK) channel
Ist Teil von
  • The Journal of physiology, 2005-09, Vol.567 (2), p.545-556
Ort / Verlag
9600 Garsington Road , Oxford , OX4 2DQ , UK: The Physiological Society
Erscheinungsjahr
2005
Link zum Volltext
Quelle
Wiley Online Library (Online service)
Beschreibungen/Notizen
  • Penile erection is dependent on the nitric oxide (NO)/cGMP-dependent protein kinase I (PKGI) pathway. One important target of PKGI in smooth muscle is the large-conductance, calcium-activated potassium (BK) channel, which upon activation hyperpolarizes the smooth muscle cell membrane, causing relaxation. Relaxation of arterial and corpus cavernosum smooth muscle (CCSM) is necessary to increase blood flow into the corpora cavernosa that leads to penile tumescence. We investigated the functional role of BK channels in the corpus cavernosum utilizing a knock-out mouse lacking the Slo gene ( Slo −/− ) responsible for the pore-forming subunit of the BK channel. Whole-cell currents were recorded from isolated CCSM cells of Slo +/+ and Slo −/− mice. Iberiotoxin-sensitive voltage- and [Ca 2+ ]-activated K + currents, the latter activated by local transient calcium releases (calcium sparks), were present in Slo +/+ CCSM cells, but absent in Slo −/− cells. CCSM strips from Slo −/− mice demonstrated a four-fold increase in phasic contractions, in the presence of phenylephrine. Nerve-evoked relaxations of precontracted strips were reduced by 50%, both in strips from Slo −/− mice and by blocking BK channels with iberiotoxin in the Slo +/+ strips. Consistent with the in vitro results, in vivo intracavernous pressure exhibited pronounced oscillations in Slo −/− mice, but not in Slo +/+ mice. Furthermore, intracavernous pressure increases to nerve stimulation, in vivo , were reduced by 22% in Slo −/− mice. These results indicate that the BK channel has an important role in erectile function, and loss of the BK channel leads to erectile dysfunction.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX