Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 679

Details

Autor(en) / Beteiligte
Titel
Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions
Ist Teil von
  • Biorheology (Oxford), 2001, Vol.38 (2-3), p.249
Ort / Verlag
Netherlands
Erscheinungsjahr
2001
Link zum Volltext
Beschreibungen/Notizen
  • The flow properties of blood are mostly determined using various viscometric approaches, and described in terms of a shear rate or shear stress dependent apparent viscosity. The interpretation of results are rather difficult, especially at low shear rates when particle sedimentation and migration within the viscometer gap are significant. By contrast, analysing the separation process in concentrated RBC suspensions in a centrifugal field also yields information about the viscosity function, including particle-particle interaction and deformation parameters. In this paper, the sedimentation process is approached by means of the theory of kinematic waves and theoretically described by solving the corresponding one-dimensional quasi-linear partial differential equation based on viscosity/flow function as a function of volume concentration. The sedimentation kinetics of rigid spherical RBC suspended in saline and normal RBC suspended in Dx-saline solutions were investigated by means of a separation analyser (LUMiFuge 114). The instrument detects the light transmission over the total length of the cell containing the suspension. During centrifugation the analyser automatically determines the position of the particle free fluid/suspension interface or the sediment by means of a special algorithm. The data obtained with sedimentation of rigid spherical RBC at different volume concentrations demonstrate that, in the case of suspensions rotated in containers of constant cross section, there is good agreement between the theory of kinematic waves developed by Anestis and Schneider (1983) and the results of the experiments. Such good agreement was obtained even though a restrictive one-dimensional model was used to obtain the theoretically derived sedimentation time course. In addition, we describe an algorithm enabling the experimental determination of the viscosity and related flux density function to be made for any suspension. Through this approach, we investigated in detail the rheological behavior of suspended rigid spheres at low Reynolds numbers ranging from 10(-6) to 10(-3). The method here introduced also enabled us to investigate RBC suspensions with respect to the deformability and interactions of the cells by means of the separation analysis. Normal, rigid as well as aggregating RBC exhibited marked differences in the sedimentation kinetics, which were quantified by means of the flux and viscosity functions based on the theory of kinematic waves.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX