Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 9540

Details

Autor(en) / Beteiligte
Titel
Ratiometric fluorescence imaging of dual bio-molecular events in single living cells using a new FRET pair mVenus/mKOκ-based biosensor and a single fluorescent protein biosensor
Ist Teil von
  • Biosensors & bioelectronics, 2012-01, Vol.31 (1), p.292-298
Ort / Verlag
Kidlington: Elsevier B.V
Erscheinungsjahr
2012
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • ► We established a novel combination of fluorescent protein-based biosensors for dual-parameter ratiometric imaging in single living cells. ► Using this approach, we achieved simultaneous imaging of Src/Ca2+ signaling and GSH redox potential in single living cells, which was previously unattainable. ► Furthermore, we provided evidence that EGF-induced Src signaling was negatively regulated by H2O2 via its effect on GSH-based redox system. Genetically coded fluorescent protein (FP)-based biosensors are powerful tools for the non-invasive tracking of molecular events in living cells. Although a variety of FP biosensors are available, the simultaneous imaging of multiple biosensors (multi-parameter imaging) in single living cells remains a challenge and is far from routinely used to elucidate the intricate networks of molecular events. In this study, we established a novel combination of FP biosensors for dual-parameter ratiometric imaging, consisting of a new fluorescence resonance energy transfer (FRET) pair mVenus (yellow FP)/mKOκ (orange FP)-based (abbreviated as YO) biosensor and a single FP-based biosensor Grx1-roGFP2. Under our imaging condition, 1.4±0.05% of Grx1-roGFP2 signal contributes to the mVenus channel and 5.2±0.12% of the mVenus signal contributes to the Grx1-roGFP2 channel. We demonstrate that such low degree of cross-talk causes negligible distortion of the ratiometric signal of the YO-based FRET biosensor and Grx1-roGFP2. By using this dual-parameter ratiometric imaging approach, we achieved simultaneous imaging of Src/Ca2+ signaling and glutathione (GSH) redox potential in a single cell, which was previously unattainable. Furthermore, we provided direct evidence that epidermal growth factor (EGF)-induced Src signaling was negatively regulated by H2O2 via its effect on GSH-based redox system, demonstrating the power of this dual-parameter imaging approach for elucidating new connections between different molecular events that occur in a single cell. More importantly, the dual-parameter imaging approach described in this study is highly extendable.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX