Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 266
The Tohoku Journal of Experimental Medicine, 2023, Vol.261(4), pp.283-289
2023

Details

Autor(en) / Beteiligte
Titel
LncRNA SNHG16 Knockdown Promotes Diabetic Foot Ulcer Wound Healing via Sponging MiR-31-5p
Ist Teil von
  • The Tohoku Journal of Experimental Medicine, 2023, Vol.261(4), pp.283-289
Ort / Verlag
Japan: Tohoku University Medical Press
Erscheinungsjahr
2023
Link zum Volltext
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • Diabetic foot ulcers are caused by nerve abnormalities and vascular lesions in the distal lower limbs of diabetic patients. However, the causes of diabetic foot ulcers are diverse and the treatment process is complex. Therefore, understanding the pathogenesis of diabetic foot ulcers through lncRNA and formulating effective means are the key to the cure of patients. Tissues were collected from 76 diabetic foot ulcer patients and 50 non-diabetic patients undergoing traumatic amputation. Human dermal fibroblasts (HDFs) were induced by high glucose to obtain diabetic foot ulcer cell model. The lncRNA SNHG16 (SNHG16) and miR-31-5p expression in tissues and cells was detected by real-time quantitative reverse transcription PCR (RT-qPCR). Cell Counting Kit-8 (CCK-8) and Transwell assays were used to evaluate the biological behavior of the cells, and the association between SNHG16 and miR-31-5p was explored by luciferase reporting assay. SNHG16 was distinctly expressed in diabetic foot ulcer tissue samples, while miR-31-5p was decreased. In vitro cell function assays confirmed that the proliferation level was inhibited in the constructed diabetic foot ulcer cell model (HG group), as was the migration and invasion ability. After transfection with silencing SNHG16, the biological behavior of the cells was promoted. Mechanistically, SNHG16 sponge miR-31-5p regulated disease progression. Recovery experiments revealed that miR-31-5p inhibitor counteracted the effect of silencing SNHG16 on cell viability. SNHG16 knockdown may regulate the biological function of cells by targeting miR-31-5p to promote wound healing and ameliorate the condition of diabetic foot ulcer patients.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX