Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 482

Details

Autor(en) / Beteiligte
Titel
Approaching the motional ground state of a 10-kg object
Ist Teil von
  • Science (American Association for the Advancement of Science), 2021-06, Vol.372 (6548), p.1333-1336
Ort / Verlag
Washington: The American Association for the Advancement of Science
Erscheinungsjahr
2021
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Really cool mirrors Cooling objects to low temperature can increase the sensitivity of sensors and the operational performance of most devices. Removing most of the thermal vibrations—or phonons—such that the object reaches its motional quantum ground state has been achieved but typically with tiny, nanoscale objects. Using the suspended mirrors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) that form a 10-kg optomechanical oscillator, Whittle et al. demonstrate the ability to cool such a large-scale object to nearly the motional ground state. An upgrade to LIGO with such a modification could increase its sensitivity and range to gravitational waves but also extend studies of quantum mechanics to large-scale objects. Science , abh2634, this issue p. 1333 A 10-kg mechanical oscillator, the mirror of LIGO, is cooled to near its motional quantum ground state. The motion of a mechanical object, even a human-sized object, should be governed by the rules of quantum mechanics. Coaxing them into a quantum state is, however, difficult because the thermal environment masks any quantum signature of the object’s motion. The thermal environment also masks the effects of proposed modifications of quantum mechanics at large mass scales. We prepared the center-of-mass motion of a 10-kilogram mechanical oscillator in a state with an average phonon occupation of 10.8. The reduction in temperature, from room temperature to 77 nanokelvin, is commensurate with an 11 orders-of-magnitude suppression of quantum back-action by feedback and a 13 orders-of-magnitude increase in the mass of an object prepared close to its motional ground state. Our approach will enable the possibility of probing gravity on massive quantum systems.
Sprache
Englisch
Identifikatoren
ISSN: 0036-8075
eISSN: 1095-9203
DOI: 10.1126/science.abh2634
Titel-ID: cdi_proquest_miscellaneous_2543452218

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX