Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 294

Details

Autor(en) / Beteiligte
Titel
Origins of structural and electronic transitions in disordered silicon
Ist Teil von
  • Nature (London), 2021-01, Vol.589 (7840), p.59-64
Ort / Verlag
England: Nature Publishing Group
Erscheinungsjahr
2021
Link zum Volltext
Beschreibungen/Notizen
  • Structurally disordered materials pose fundamental questions , including how different disordered phases ('polyamorphs') can coexist and transform from one phase to another . Amorphous silicon has been extensively studied; it forms a fourfold-coordinated, covalent network at ambient conditions and much-higher-coordinated, metallic phases under pressure . However, a detailed mechanistic understanding of the structural transitions in disordered silicon has been lacking, owing to the intrinsic limitations of even the most advanced experimental and computational techniques, for example, in terms of the system sizes accessible via simulation. Here we show how atomistic machine learning models trained on accurate quantum mechanical computations can help to describe liquid-amorphous and amorphous-amorphous transitions for a system of 100,000 atoms (ten-nanometre length scale), predicting structure, stability and electronic properties. Our simulations reveal a three-step transformation sequence for amorphous silicon under increasing external pressure. First, polyamorphic low- and high-density amorphous regions are found to coexist, rather than appearing sequentially. Then, we observe a structural collapse into a distinct very-high-density amorphous (VHDA) phase. Finally, our simulations indicate the transient nature of this VHDA phase: it rapidly nucleates crystallites, ultimately leading to the formation of a polycrystalline structure, consistent with experiments but not seen in earlier simulations . A machine learning model for the electronic density of states confirms the onset of metallicity during VHDA formation and the subsequent crystallization. These results shed light on the liquid and amorphous states of silicon, and, in a wider context, they exemplify a machine learning-driven approach to predictive materials modelling.
Sprache
Englisch
Identifikatoren
ISSN: 0028-0836
eISSN: 1476-4687
DOI: 10.1038/s41586-020-03072-z
Titel-ID: cdi_proquest_miscellaneous_2476127968

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX