Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 97
Journal of hazardous materials, 2020-11, Vol.398, p.122859-122859, Article 122859
2020

Details

Autor(en) / Beteiligte
Titel
Effects of foliar application of graphene oxide on cadmium uptake by lettuce
Ist Teil von
  • Journal of hazardous materials, 2020-11, Vol.398, p.122859-122859, Article 122859
Ort / Verlag
Netherlands: Elsevier B.V
Erscheinungsjahr
2020
Link zum Volltext
Quelle
MEDLINE
Beschreibungen/Notizen
  • [Display omitted] •Foliar application of 30 mg/L GO significantly could increase lettuce root growth.•Foliar application of 30 mg/L GO significantly improved the quality of lettuce.•GO could decrease Cd toxicity on lettuce by formed new bonds between exposed oxygen and Cd. Although graphene oxide (GO) has been widely used to enhance soil quality and crop yield, there is currently little information regarding the effects of foliar application of GO on cadmium (Cd) toxicity to plants. In this study, we investigated the response to GO in lettuce cultivated under Cd stress in hydroponic conditions. Lettuce was grown from seeds in a nutrient solution supplemented with 2 mg/L Cd and the leaves were sprayed with 0, 30, and 60 mg/L GO. The results indicated that application of 30 mg/L GO significantly increased the total length, surface area, average diameter, and hair number of lettuce roots, and effectively alleviated the negative effects of Cd on root growth. Furthermore, foliar application of 30 mg/L GO, but not 60 mg/L GO, significantly improved the quality of lettuce, including reduction in Cd accumulation in leaves and roots and increase in soluble sugar, protein, and vitamin C content. Transmission electron microscopy revealed that GO nanoparticles, which entered the leaves and were subsequently transported to the roots via the vascular system (phloem), reduced the damaging effect of Cd on cellular organelles, including the cell wall and membrane, chloroplasts, and starch granules. The effect may be attributed to the absorption of GO by lettuce cells, where it fixed Cd2+, thus reducing Cd2+ bioavailability, or to the improvement of Cd tolerance through regulation of lettuce metabolic pathways. Gaussian simulation analysis revealed that Cd caused significant changes in the GO molecule, resulting in detachment of an epoxy group from the GO carbon ring and breakage of OH bonds in hydroxyl groups, whereupon the oxygen freed from the OH bond formed a new bond with Cd. Collectively, these results indicate that foliar application of 30 mg/L GO can enhance the tolerance of lettuce to Cd, promote plant growth, and improve nutritional quality.
Sprache
Englisch
Identifikatoren
ISSN: 0304-3894
eISSN: 1873-3336
DOI: 10.1016/j.jhazmat.2020.122859
Titel-ID: cdi_proquest_miscellaneous_2408845619

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX