Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Turbulent Rayleigh–Bénard convection in a cylindrical container with aspect ratio Γ = 0.50 and Prandtl number Pr = 4.38
Ist Teil von
  • Journal of fluid mechanics, 2011-06, Vol.676, p.5-40
Ort / Verlag
Cambridge, UK: Cambridge University Press
Erscheinungsjahr
2011
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Measurements of the Nusselt number and properties of the large-scale circulation (LSC) are presented for turbulent Rayleigh–Bénard convection in water-filled cylindrical containers (Prandtl number Pr = 4.38) with aspect ratio Γ = 0.50. They cover the range 2 × 108 ≲ Ra ≲ 1 × 1011 of the Rayleigh number Ra. We confirm the occurrence of a double-roll state (DRS) of the LSC and focus on the statistics of the transitions between the DRS and a single-roll state (SRS). The fraction of the run time when the SRS existed varied continuously from about 0.12 near Ra = 2 × 108 to about 0.8 near Ra = 1011, while the fraction of the run time when the DRS could be detected changed from about 0.4 to about 0.06 over the same range of Ra. We determined separately the Nusselt number of the SRS and the DRS, and found the former to be larger than the latter by about 1.6% (0.9%) at Ra = 1010 (1011). We report a contribution to the dynamics of the SRS from a torsional oscillation similar to that observed for cylindrical samples with Γ = 1.00. Results for a number of statistical properties of the SRS are reported, and some are compared with the cases Γ = 0.50, Pr = 0.67 and Γ = 1.00, Pr = 4.38. We found that genuine cessations of the SRS were extremely rare and occurred only about 0.3 times per day, which is less frequent than for Γ = 1.00; however, the SRS was disrupted frequently by roll-state transitions and other less well-defined events. We show that the time derivative of the LSC plane orientation is a stochastic variable which, at constant LSC amplitude, is Gaussian distributed. Within the context of the LSC model of Brown & Ahlers (Phys. Fluids, vol. 20, 2008b, art. 075101), this demonstrates that the stochastic force due to the small-scale fluctuations that is driving the LSC dynamics has a Gaussian distribution.
Sprache
Englisch
Identifikatoren
ISSN: 0022-1120
eISSN: 1469-7645
DOI: 10.1017/S0022112010005963
Titel-ID: cdi_proquest_miscellaneous_1642272954

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX