Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 13 von 9525995
Open Access
Kernelized movement primitives
The International journal of robotics research, 2019-06, Vol.38 (7), p.833-852
2019

Details

Autor(en) / Beteiligte
Titel
Kernelized movement primitives
Ist Teil von
  • The International journal of robotics research, 2019-06, Vol.38 (7), p.833-852
Ort / Verlag
London, England: SAGE Publications
Erscheinungsjahr
2019
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Imitation learning has been studied widely as a convenient way to transfer human skills to robots. This learning approach is aimed at extracting relevant motion patterns from human demonstrations and subsequently applying these patterns to different situations. Despite the many advancements that have been achieved, solutions for coping with unpredicted situations (e.g., obstacles and external perturbations) and high-dimensional inputs are still largely absent. In this paper, we propose a novel kernelized movement primitive (KMP), which allows the robot to adapt the learned motor skills and fulfill a variety of additional constraints arising over the course of a task. Specifically, KMP is capable of learning trajectories associated with high-dimensional inputs owing to the kernel treatment, which in turn renders a model with fewer open parameters in contrast to methods that rely on basis functions. Moreover, we extend our approach by exploiting local trajectory representations in different coordinate systems that describe the task at hand, endowing KMP with reliable extrapolation capabilities in broader domains. We apply KMP to the learning of time-driven trajectories as a special case, where a compact parametric representation describing a trajectory and its first-order derivative is utilized. In order to verify the effectiveness of our method, several examples of trajectory modulations and extrapolations associated with time inputs, as well as trajectory adaptations with high-dimensional inputs are provided.
Sprache
Englisch
Identifikatoren
ISSN: 0278-3649
eISSN: 1741-3176
DOI: 10.1177/0278364919846363
Titel-ID: cdi_proquest_journals_2230072248

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX