Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 41798

Details

Autor(en) / Beteiligte
Titel
Impact of sub-grid scale models on resolving mixing and thermal shear layers in large eddy simulation of JHC flames
Ist Teil von
  • Applied thermal engineering, 2019-02, Vol.149, p.1244-1254
Ort / Verlag
Oxford: Elsevier Ltd
Erscheinungsjahr
2019
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • Conceptual analysis of mean (not fluctuating) major products. [Display omitted] •Conceptual analysis of JHC flames using profiles of mean species mass fraction.•Comparison of static and dynamic SGS models on resolving physics of shear layers.•Non-equilibrium turbulence and dynamic eddy viscosity coefficient are essential assumptions of SGS models.•For symmetrical JHC flames, results of quasi-3D LES can be comparable with full 3D LES.•In LES of JHC flames, the “mean values” provide brilliant information for major species. Predictive performance of sub-grid scale (SGS) models is investigated in Large Eddy Simulation (LES) of a methane/hydrogen jet-in-hot coflow (JHC) flame using a conceptual analysis proposed for the mean values of major combustion products. It is shown that mean values of major combustion products consist of valuable information on several characteristics of JHC flames such as flame thickness, flame volume and reaction intensity. In particular, sudden change of CO2 and H2O mass fractions from coflow contents to higher values, predicted by static SGS models, demonstrated a thin flame constricted around the center line. However, uniform ascending manner of CO2 and H2O contents in the coflow region predicted by dynamic SGS models revealed their ability on capturing characteristics of a distributed volumetric flame. For the temperature fluctuations in shear layers, the dynamic Smagorinsky model is also shown to provide better predictions than the constant-coefficient Smagorinsky model, the latter exhibiting significant over-predictions. It is also observed that the dynamic kinetic energy SGS model with its unique assumption of non-equilibrium turbulence is the best fitted SGS model for the JHC flames as it provides improved accuracy on developing mixing and thermal shear layers by solving an extra transport equation for turbulent kinetic energy.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX