Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 6709

Details

Autor(en) / Beteiligte
Titel
Atomically Thin Defect‐Rich Fe–Mn–O Hybrid Nanosheets as High Efficient Electrocatalyst for Water Oxidation
Ist Teil von
  • Advanced functional materials, 2018-08, Vol.28 (34), p.n/a
Ort / Verlag
Hoboken: Wiley Subscription Services, Inc
Erscheinungsjahr
2018
Link zum Volltext
Quelle
Wiley Online Library Journals Frontfile Complete
Beschreibungen/Notizen
  • Engineering non‐noble metal–based electrocatalysts with superior water oxidation performance is highly desirable for the production of renewable chemical fuels. Here, an atomically thin low‐crystallinity Fe–Mn–O hybrid nanosheet grown on carbon cloth (Fe–Mn–O NS/CC) is successfully synthetized as an efficient oxygen evolution reaction (OER) catalyst. The synthesis strategy involves a facile reflux reaction and subsequent low‐temperature calcination process, and the morphology and composition of hybrid nanosheets can be tailored conveniently. The defect‐rich Fe–Mn–O ultrathin nanosheet with uniform element distribution enables exposure of more catalytic active sites; moreover, the atomic‐scale synergistic action of Mn and Fe oxide contributes to an enhanced intrinsic catalytic activity. Therefore, the optimized Fe–Mn–O hybrid nanosheets, with lateral sizes of about 100–600 nm and ≈1.4 nm in thickness, enable a low onset potential of 1.46 V, low overpotential of 273 mV for current density of 10 mA cm−2, a small Tafel slope of 63.9 mV dec−1, and superior durability, which are superior to that of individual MnO2 and FeOOH electrode, and even outperforming most reported MnO2‐based electrocatalysts. A defect‐rich Fe–Mn–O hybrid ultrathin nanosheet obtained by simple reflux and low‐temperature calcination route exhibits superior oxygen evolution reaction activity at alkaline media. The ultrathin nanosheets of ≈1.4 nm thick make it possible to expose more catalytic active sites; moreover, the atomic‐scale synergistic action of Mn and Fe oxide and defect‐rich structure contributes to an enhanced intrinsic catalytic activity.
Sprache
Englisch
Identifikatoren
ISSN: 1616-301X
eISSN: 1616-3028
DOI: 10.1002/adfm.201802463
Titel-ID: cdi_proquest_journals_2089828530

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX