Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 1324

Details

Autor(en) / Beteiligte
Titel
Controlled SnO2 Crystallinity Effectively Dominating Sodium Storage Performance
Ist Teil von
  • Advanced energy materials, 2016-05, Vol.6 (10), p.n/a
Ort / Verlag
Weinheim: Blackwell Publishing Ltd
Erscheinungsjahr
2016
Link zum Volltext
Quelle
Wiley Online Library All Journals
Beschreibungen/Notizen
  • The exploration of sodium ion batteries (SIBs) is a profound challenge due to the rich sodium abundance and limited supply of lithium on earth. Here, amorphous SnO2/graphene aerogel (a‐SnO2/GA) nanocomposites have been successfully synthesized via a hydrothermal method for use as anode materials in SIBs. The designed annealing process produces crystalline SnO2/graphene aerogel (c‐SnO2/GA) nanocomposites. For the first time, the significant effects of SnO2 crystallinity on sodium storage performance are studied in detail. Notably, a‐SnO2/GA is more effective than c‐SnO2/GA in overcoming electrode degradation from large volume changes associated with charge–discharge processes. Surprisingly, the amorphous SnO2 delivers a high specific capacity of 380.2 mAh g−1 after 100 cycles at a current density of 50 mA g−1, which is almost three times as much as for crystalline SnO2 (138.6 mAh g−1). The impressive electrochemical performance of amorphous SnO2 can be attributed to the intrinsic isotropic nature, the enhanced Na+ diffusion coefficient, and the strong interaction between amorphous SnO2 and GA. In addition, amorphous SnO2 particles with the smaller size better function to relieve the volume expansion/shrinkage. This study provides a significant research direction aiming to increase the electrochemical performance of the anode materials used in SIBs. The significant impacts of SnO2 crystallinity, considering both amorphous and crystalline modifications, on sodium storage performance are investigated for the first time. The amorphous SnO2 exhibits a high specific capacity (380.2 mAh g−1 after 100 cycles) and excellent cycling stability (with capacity retention of 91.7%, relative to the 6th cycle over 100 cycles) compared to that of crystalline SnO2 (specific capacity of 138.6 mAh g−1, capacity retention of 83.0%).
Sprache
Englisch
Identifikatoren
ISSN: 1614-6832
eISSN: 1614-6840
DOI: 10.1002/aenm.201502057
Titel-ID: cdi_proquest_journals_1791153101

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX