Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Diabetic retinopathy (DR) is a disease which is widely diagnosed using (colour fundus) images. Efficiency and accuracy are critical in diagnosing DR as lack of timely intervention can lead to irreversible visual impairment. In this paper, we examine strategies for scrutinizing images which affect diagnostic performance of medical practitioners via an eye-tracking study. A total of 56 subjects with 0 to 18 years of experience participated in the study. Every subject was asked to detect DR from 40 images. The findings indicate that practitioners use mainly two types of strategies characterized by either higher dwell duration or longer track length. The main findings of the study are that higher dwell-based strategy led to higher average accuracy (> 85%) in diagnosis, irrespective of the expertise of practitioner; whereas, the average obtained accuracy with a long-track length-based strategy was dependent on the expertise of the practitioner. In the second part of the paper, we use the experimental findings to recommend a scanning strategy for fast and accurate diagnosis of DR that can be potentially used by image readers. This is derived by combining the eye-tracking gaze maps of medical experts in a novel manner based on a set of rules. This strategy requires scrutiny of images in a manner which is consistent with spatial preferences found in human perception in general and in the domain of fundus images in particular. The Levenshtein distance-based assessment of gaze patterns also establish the effectiveness of the derived scanning pattern and is thus recommended for image readers.