Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 78895

Details

Autor(en) / Beteiligte
Titel
Depth-Dependent Understanding of Cathode Electrolyte Interphase (CEI) on the Layered Li-Ion Cathodes Operated at Extreme High Temperature
Ist Teil von
  • Chemistry of materials, 2022-05, Vol.34 (10), p.4587-4601
Ort / Verlag
United States: American Chemical Society
Erscheinungsjahr
2022
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The high-temperature operation of Li-ion batteries is highly dependent on the stability of the cathode electrolyte interphase (CEI) formed during lithiation–delithiation reactions. However, knowledge on the nature of the CEI is limited and its stability under extreme temperatures is not well understood. Therefore, herein, we investigate a proof-of-concept study on stabilizing CEI on model LiNi0.33Mn0.33Co0.33O2 (NMC333) at an extreme operation condition of 100 °C using the thermally stable pyrrolidinium-based ionic liquid electrolyte. The electrochemical lithiation–delithiation reactions at 100 °C and the CEI evolution upon different cycling conditions are investigated. Further, the depth-dependent CEI chemistry was investigated using energy-tunable synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). The results reveal that the high-temperature operation accelerated the CEI formation compared to room temperature, and the surface of the interphase layer is rich in boron-based inorganic moieties than the deeper surface. Further, bulk-sensitive X-ray absorption spectroscopy (XAS) was used to investigate the transition-metal redox contributors during high-temperature electrochemical reactions; similar to room temperature, the Ni2+/4+ redox couple is the only charge-compensating redox couple during high-temperature operation. Finally, the physical nature of the conformal CEI on the cathode particles was visualized with high-resolution transmission electron microscopy, which confirms that the significant degradation of cathode particles without conformal CEI is due to the transformation of a layer-to-spinel formation at extreme temperature. In this study, understanding this high-temperature interfacial chemistry of NMC cathodes through advanced spectroscopy and microscopy will shed light on transforming the ambient-temperature Li-ion chemistry into high-temperature applications.
Sprache
Englisch
Identifikatoren
ISSN: 0897-4756
eISSN: 1520-5002
DOI: 10.1021/acs.chemmater.2c00435
Titel-ID: cdi_osti_scitechconnect_1867192

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX