Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 20

Details

Autor(en) / Beteiligte
Titel
The protoplanetary disk population in the ρ -Ophiuchi region L1688 and the time evolution of Class II YSOs
Ist Teil von
  • Astronomy and astrophysics (Berlin), 2022-07, Vol.663, p.A98
Ort / Verlag
EDP Sciences
Erscheinungsjahr
2022
Link zum Volltext
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Context. Planets form during the first few Myr of the evolution of the star-disk system, possibly before the end of the embedded phase. The properties of very young disks and their subsequent evolution reflect the presence and properties of their planetary content. Aims. We present a study of the Class II/F disk population in L1688, the densest and youngest region of star formation in Ophiuchus. We also compare it to other well-known nearby regions of different ages, namely Lupus, Chamaeleon I, Corona Australis, Taurus and Upper Scorpius. Methods. We selected our L1688 sample using a combination of criteria (available ALMA data, Gaia membership, and optical and near-IR spectroscopy) to determine the stellar and disk properties, specifically stellar mass ( M ⋆ ), average population age, mass accretion rate ( Ṁ acc ) and disk dust mass ( Ṁ dust ). We applied the same procedure in a consistent manner to the other regions. Results. In L1688 the relations between Ṁ acc and M ⋆ , M dust and M ⋆ , and Ṁ acc and M dust have a roughly linear trend with slopes 1.8–1.9 for the first two relations and ~1 for the third, which is similar to what found in the other regions. When ordered according to the characteristic age of each region, which ranging from ~ 0.5 to ~5 Myr, Ṁ acc decreases as t −1 , when corrected for the different stellar mass content; M dust follows roughly the same trend, ranging between 0.5 and 5 Myr, but has an increase of a factor of ~3 at ages of 2–3 Myr. We suggest that this could result from an earlier planet formation, followed by collisional fragmentation that temporarily replenishes the millimeter-size grain population. The dispersion of Ṁ acc and M dust around the best-fitting relation with M ⋆ , as well as that of Ṁ acc versus M dust are equally large. When adding all the regions together to increase the statistical significance, we find that the dispersions have continuous distributions with a log-normal shape and similar widths (~0.8 dex). Conclusions. This detailed study of L1688 confirms the general picture of Class II/F disk properties and extends it to a younger age. The amount of dust observed at ~1 Myr is not sufficient to assemble the majority of planetary systems, which suggests an earlier formation process for planetary cores. The dust mass traces to a large extent the disk gas mass evolution, even if the ratio M dust / M disk at the earliest age (0.5–1 Myr) is not known. Two properties are still not understood: the steep dependence of Ṁ acc and M dust on M ⋆ and the cause of the large dispersion in the three relations analyzed in this paper, in particular that of the Ṁ acc versus M dust relation.
Sprache
Englisch
Identifikatoren
ISSN: 0004-6361
eISSN: 1432-0746
DOI: 10.1051/0004-6361/202141380
Titel-ID: cdi_hal_primary_oai_HAL_insu_03860333v1

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX