Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 20 von 53834

Details

Autor(en) / Beteiligte
Titel
The impacts of firework burning at the Chinese Spring Festival on air quality: insights of tracers, source evolution and aging processes
Ist Teil von
  • Atmospheric chemistry and physics, 2015-02, Vol.15 (4), p.2167-2184
Ort / Verlag
Katlenburg-Lindau: Copernicus GmbH
Erscheinungsjahr
2015
Link zum Volltext
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • To understand the impact of firework-burning (FW) particles on air quality and human health during the winter haze period, 39 elements, 10 water-soluble ions and 8 fractions of carbonaceous species in atmospheric PM2.5 in Nanjing were investigated during the 2014 Chinese Spring Festival (SF). Serious regional haze pollution persisted throughout the entire sampling period, with PM2.5 averaging at 113 plus or minus 69 mu g m-3 and visibility at 4.8 plus or minus 3.2 km. The holiday effect led to almost all the chemical species decreasing during the SF, except for Al, K, Ba and Sr which were related to FW. The source contributions of coal combustion, vehicle emission and road dust decreased dramatically, whereas FW contributed to about half of the PM2.5 during the SF period. The intensive emission of FW particles on New Year's Eve accounted for 60.1% of the PM2.5. Fireworks also obviously modified the chemical compositions of PM2.5, with 39.3% contributed by increased organic matter, followed by steadily increased loadings of secondary inorganic ions. The aging processes of the FW particles lasted for about 4 days reflected by the variations of Ba, Sr, NH super(+) sub(4), NO super(-) sub(3), SO sub(4) super(2-) and K super(+), characterized by heterogeneous reactions of SO sub(2) and NO sub(x) on crustal materials directly from FW, the replacement of Cl super(-) by NO super(-) sub(3) and SO sub(4) super(2-), coating of NO super(-) sub(3) and SO sub(4) super(2-) on soot, formation of secondary organic aerosols and metal-catalyzed formation of NO super(-) sub(3) and SO sub(4) super(2-) at higher relative humidity. During aging, the main contributors to the extinction coefficient shifted from elemental carbon and organic matter to ammonium sulfate. The particles raised higher cancer risk of 1.62 x 10 super(-6) by heavy metals (especially for Cd and As). This study provided detailed composition data and first comprehensive analysis of the aging processes of FW particles during the serious haze pollution period and their potential impact on human health.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX