Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: Arsenic contamination in Cambodia
Ist Teil von
  • Environmental pollution (1987), 2015-11, Vol.206, p.315-323
Ort / Verlag
England: Elsevier Ltd
Erscheinungsjahr
2015
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • The potential arsenite bioteansformation activity of arsenic was investigated by examining bacterial arsenic arsenite-oxidizing gene such as aoxS, aoxR, aoxA, aoxB, aoxC, and aoxD in high arsenic-contaminated drinking water produced from the surface water of floating houses. There is a biogeochemical cycle of activity involving arsenite oxidase aox system and the ars (arsenic resistance system) gene operon and aoxR leader gene activity in Alcaligenes faecalis SRR-11 and aoxS leader gene activity in Achromobacter xylosoxidans TSL-66. Batch experiments showed that SRR-11 and TSL-66 completely oxidized 1 mM of As (III) to As (V) within 35–40 h. The leaders of aoxS and aoxR are important for gene activity, and their effects in arsenic bioremediation and mobility in natural water has a significant ecological role because it allows arsenite oxidase in bacteria to control the biogeochemical cycle of arsenic-contaminated drinking water produced from surface water of floating houses. [Display omitted] •The aox genotype system activity and arsenite-oxidizing bacteria was studied.•High arsenic contamination affects the detoxification activities of aoxS and aoxM.•Much Cambodian drinking water has dangerously high arsenic contamination.•Disease-causing microorganisms were found in various drinking water sources. The importance of this study is that it responds to the high concentrations of arsenic contamination that were found in the drinking water of floating-house residents with the following proposition: The combined periplasm activity of the aoxS and aoxR genes and arsenite oxidase reflects the arsenic oxidation potential of the aoxA, aoxB, aoxC, and aoxD systems in the surface water of floating houses in Cambodia.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX