Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Remote management of deficit irrigation in almond trees based on maximum daily trunk shrinkage. Water relations and yield
Ist Teil von
  • Agricultural water management, 2013-08, Vol.126, p.33-45
Ort / Verlag
Amsterdam: Elsevier B.V
Erscheinungsjahr
2013
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • •RDI remote scheduling in almond trees based on MDS is presented.•The scheduling precision depends on the phenological stage and the threshold value.•SIMDS values higher than 2.8 are not recommended for RDI management in almond trees.•RDI scheduling based on SIMDS is more cost-effective than satisfying ETc.•RDI strategies based on SIMDS result in similar water savings than based on ETc. This study assesses the usefulness of the remote scheduling of regulated deficit irrigation (RDI) in almond based on the maximum daily trunk shrinkage signal intensity (SIMDS). The 2-year experiment was carried out in SE Spain on 12-year-old almond trees (Prunus dulcis (Mill.) D.A. Webb cv. Guara). Four irrigation treatments were established to evaluate soil–plant water status, yield and water productivity: (i) control treatment (CTL), irrigated to satisfy the maximum crop water requirements (ETc), (ii) RDI1 and (iii) RDI2, both established to maintain different target thresholds of SIMDS according to the phenological stage and (iv) farmer treatment (FRM), irrigated by the grower according to his own experience. In 2009 and 2010 strategies 1.3-2.2-1.6 (SIMDS target threshold for each tree development stages II–III, IV and V, respectively) and 1.6-2.8-1.6 were applied in RDI1, respectively, and strategies 1.0-2.8-1.3 and 1.0-3.2-1.0 in RDI2. A supervisory control and data acquisition platform (SCADA) was created to monitor and remotely manage the irrigation scheduling. The obtained results indicate that SIMDS is a suitable parameter for irrigation scheduling throughout the growing season. The greater or lesser accuracy of fit of the measured SIMDS values to the thresholds depended on the phenological stage and the target stress intensity. SIMDS threshold values higher than 2.8, which involve midday stem water potential (Ψstem) values lower than −1.9MPa, were not suitable for almond irrigation management under our growing conditions. SIMDS-based RDI strategies were able to generate moderate to severe water stress in almond trees, which resulted in seasonal water savings around 50%. RDI strategies proved to be more cost-effective than full irrigation and farmer deficit irrigation treatment given the high price of irrigation water.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX