Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
British journal of pharmacology, 2012-06, Vol.166 (4), p.1433-1443
2012

Details

Autor(en) / Beteiligte
Titel
Nociceptive and pro‐inflammatory effects of dimethylallyl pyrophosphate via TRPV4 activation
Ist Teil von
  • British journal of pharmacology, 2012-06, Vol.166 (4), p.1433-1443
Ort / Verlag
Oxford, UK: Blackwell Publishing Ltd
Erscheinungsjahr
2012
Link zum Volltext
Quelle
Wiley Online Library Journals Frontfile Complete
Beschreibungen/Notizen
  • BACKGROUND AND PURPOSE Sensory neuronal and epidermal transient receptor potential ion channels (TRPs) serve an important role as pain sensor molecules. While many natural and synthetic ligands for sensory TRPs have been identified, little is known about the endogenous activator for TRPV4. Recently, we reported that endogenous metabolites produced by the mevalonate pathway regulate the activities of sensory neuronal TRPs. Here, we show that dimethylallyl pyrophosphate (DMAPP), a substance produced by the same pathway is an activator of TRPV4. EXPERIMENTAL APPROACH We examined the effects of DMAPP on sensory TRPs using Ca2+ imaging and whole‐cell electrophysiology experiments with a heterologous expression system (HEK293T cells transfected with individual TRP channels), cultured sensory neurons and keratinocytes. We then evaluated nociceptive behavioural and inflammatory changes upon DMAPP administration in mice in vivo. KEY RESULTS In the HEK cell heterologous expression system, cultured sensory neurons and keratinocytes, µM concentrations of DMAPP activated TRPV4. Agonistic and antagonistic potencies of DMAPP for other sensory TRP channels were examined and activation of TRPV3 by camphor was found to be inhibited by DMAPP. In vivo assays, intraplantar injection of DMAPP acutely elicited nociceptive flinches that were prevented by pretreatment with TRPV4 blockers, indicating that DMAPP is a novel pain‐producing molecule through TRPV4 activation. Further, DMAPP induced acute inflammation and noxious mechanical hypersensitivities in a TRPV4‐dependent manner. CONCLUSIONS AND IMPLICATIONS Overall, we found a novel sensory TRP acting metabolite and suggest that its use may help to elucidate the physiological role of TRPV4 in nociception and associated inflammation.
Sprache
Englisch
Identifikatoren
ISSN: 0007-1188
eISSN: 1476-5381
DOI: 10.1111/j.1476-5381.2012.01884.x
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3417458
Format
Schlagworte
Animals, Behavior, Animal - drug effects, Biological and medical sciences, Calcium Signaling - drug effects, Cell Line, Cells, Cultured, dimethylallyl pyrophosphate, Ganglia, Spinal - cytology, Ganglia, Spinal - drug effects, Ganglia, Spinal - immunology, Ganglia, Spinal - metabolism, Hemiterpenes - metabolism, Humans, keratinocyte, Keratinocytes - drug effects, Keratinocytes - immunology, Keratinocytes - metabolism, Ligands, Male, Medical sciences, Mice, Nerve Tissue Proteins - agonists, Nerve Tissue Proteins - antagonists & inhibitors, Nerve Tissue Proteins - genetics, Nerve Tissue Proteins - metabolism, Neuritis - metabolism, Neurons - cytology, Neurons - drug effects, Neurons - immunology, Neurons - metabolism, Nociceptive Pain - metabolism, Organophosphorus Compounds - metabolism, pain, Pain Measurement - drug effects, Pharmacology. Drug treatments, Protein Isoforms - agonists, Protein Isoforms - antagonists & inhibitors, Protein Isoforms - genetics, Protein Isoforms - metabolism, Rats, Recombinant Proteins - agonists, Recombinant Proteins - antagonists & inhibitors, Recombinant Proteins - metabolism, Research Papers, sensory neuron, Transient Receptor Potential Channels - agonists, Transient Receptor Potential Channels - antagonists & inhibitors, Transient Receptor Potential Channels - genetics, Transient Receptor Potential Channels - metabolism, TRPV Cation Channels - agonists, TRPV Cation Channels - antagonists & inhibitors, TRPV Cation Channels - genetics, TRPV Cation Channels - metabolism, TRPV4

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX