Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Heat Stress Induces an Aggregation of the Light-Harvesting Complex of Photosystem II in Spinach Plants1
Ist Teil von
  • Plant physiology (Bethesda), 2007-02, Vol.143 (2), p.629-638
Ort / Verlag
Rockville: American Society of Plant Biologists
Erscheinungsjahr
2007
Link zum Volltext
Quelle
EZB Free E-Journals
Beschreibungen/Notizen
  • Whole spinach (Spinacia oleracea) plants were subjected to heat stress (25 degrees C-50 degrees C) in the dark for 30 min. At temperatures higher than 35 degrees C, CO2 assimilation rate decreased significantly. The maximal efficiency of photosystem II (PSII) photochemistry remained unchanged until 45 degrees C and decreased only slightly at 50 degrees C. Nonphotochemical quenching increased significantly either in the absence or presence of dithiothreitol. There was an appearance of the characteristic band at around 698 nm in 77 K fluorescence emission spectra of leaves. Native green gel of thylakoid membranes isolated immediately from heat-stressed leaves showed that many pigment-protein complexes remained aggregated in the stacking gel. The analyses of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting demonstrated that the aggregates were composed of the main light-harvesting complex of PSII (LHCIIb). To characterize the aggregates, isolated PSII core complexes were incubated at 25 degrees C to 50 degrees C in the dark for 10 min. At temperatures over 35 degrees C, many pigment-protein complexes remained aggregated in the stacking gel of native green gel, and immunoblotting analyses showed that the aggregates were composed of LHCIIb. In addition, isolated LHCII was also incubated at 25 degrees C to 50 degrees C in the dark for 10 min. LHCII remained aggregated in the stacking gel of native green gel at temperatures over 35 degrees C. Massive aggregation of LHCII was clearly observed by using microscope images, which was accompanied by a significant increase in fluorescence quenching. There was a linear relationship between the formation of LHCII aggregates and nonphotochemical quenching in vivo. The results in this study suggest that LHCII aggregates may represent a protective mechanism to dissipate excess excitation energy in heat-stressed plants.
Sprache
Englisch
Identifikatoren
ISSN: 0032-0889
eISSN: 1532-2548
DOI: 10.1104/pp.106.090712
Titel-ID: cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1803748
Format

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX