Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Synthesis, in vitro α-amylase inhibitory, and radicals (DPPH & ABTS) scavenging potentials of new N-sulfonohydrazide substituted indazoles
Ist Teil von
  • Bioorganic chemistry, 2020-01, Vol.94, p.103410-103410, Article 103410
Ort / Verlag
United States: Elsevier Inc
Erscheinungsjahr
2020
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • [Display omitted] •Synthesis of novel indazole derivatives (1–19) and their structural characterization by various spectroscopic techniques.•Evaluation of synthesized molecules for their α-amylase inhibitory activity and antioxidant potential.•Limited structure-activity relationship revealed the crucial involvement of electron withdrawing groups in activities.•In silico studies of most active compounds deciphered the binding interaction of compounds with enzyme.•Compounds showed mixed type mode of inhibition by kinetic studies. Over-expression of α-amylase enzyme causes hyperglycemia which lead to many physiological complications including oxidative stress, one of the most commonly associated problem with diabetes mellitus. Marketed α-amylase inhibitors such as acarbose, voglibose, and miglitol used to treat type-II diabetes mellitus, but also linked to several harmful effects. Therefore, it is essential to explore new and nontoxic antidiabetic agents with additional antioxidant properties. In this connection, a series of new N-sulfonohydrazide substituted indazoles 1–19 were synthesized by multistep reaction scheme and assessed for in vitro α-amylase inhibitory and radical (DPPH and ABTS) scavenging properties. All compounds were fully characterized by different spectroscopic techniques including 1H, 13C NMR, EI-MS, HREI-MS, ESI-MS, and HRESI-MS. Compounds showed promising α-amylase inhibitory activities (IC50 = 1.23 ± 0.06–4.5 ± 0.03 µM) as compared to the standard acarbose (IC50 1.20 ± 0.09 µM). In addition to that all derivatives were found good to moderate scavengers of DPPH (IC50 2.01 ± 0.13–5.3 ± 0.11) and ABTS (IC50 = 2.34 ± 0.07–5.5 ± 0.07 µM) radicals, in comparison with standard ascorbic acid having scavenging activities with IC50 = 1.99 ± 0.09 µM, and IC50 2.03 ± 0.11 µM for DPPH and ABTS radicals. In silico molecular docking study was conducted to rationalize the binding interaction of α-amylase enzyme with ligands. Compounds were observed as mixed type inhibitors in enzyme kinetic characterization.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX