Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Naturally occurring nanotube with surface modification as biocompatible, target-specific nanocarrier for cancer phototherapy
Ist Teil von
  • Biomaterials, 2019-01, Vol.190-191, p.86-96
Ort / Verlag
Netherlands: Elsevier Ltd
Erscheinungsjahr
2019
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • Phototherapy has drawn increasing attention including the use of nanocarriers with high drug loading capacity and delivery efficacy for target-specific therapy. We have made use of naturally-occurring halloysite nanotubes (HNTs) to build a biomimetic nanocarrier platform for target-specific delivery of phototherapeutic agents. The HNTs were decorated with poly(sodium-p-styrenesulfonate) (PSS) to enhance the biocompatibility, and were further functionalized by lumen loading the type-II photosensitizer indocyanine green (ICG). The HNT-PSS-ICG nanocarrier, without further tethering targeting groups, was shown to associate with the membrane of giant unilamellar vesicles (GUVs) via Pickering effects. Application of HNT-PSS-ICG nanocarrier to human breast cancer cells gave rise to a cell mortality as high as 95%. The HNT-PSS-ICG nanocarrier was further coated with MDA-MB-436 cell membranes to endow it with targeting therapy performance against breast cancer, which was confirmed by in vivo experiments using breast cancer tumors in mice. The membrane-coated and biocompatible nanocarrier preferentially concentrated in the tumor tissue, and efficiently decreased the tumor volume by a combination of photodynamic and photothermal effects upon near-infrared light exposure. Our results demonstrate that the HNT-based nanocarrier by virtue of facial preparation and high loading capacity can be a promising candidate for membrane-targeting nanocarriers. Biocompatible halloysite nanotube as target-specific nanocarrier for the application in phototherapy of breast cancer. [Display omitted]

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX