Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Environmental science and pollution research international, 2016, Vol.23 (2), p.1852-1859
2016

Details

Autor(en) / Beteiligte
Titel
Neuro and renal toxicity induced by chlorpyrifos and abamectin in rats : Toxicity of insecticide mixture
Ist Teil von
  • Environmental science and pollution research international, 2016, Vol.23 (2), p.1852-1859
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2016
Link zum Volltext
Quelle
SpringerLink (Online service)
Beschreibungen/Notizen
  • Oxidative stress by increased production of reactive oxygen species has been implicated in pesticides toxicity. This study focused on the toxicological effects of chlorpyrifos, an organophosphate insecticide and abamectin, a biocide each alone or in combination on antioxidant status, and oxidative stress biomarkers in brain and kidney. Animals were divided into four groups. The first group was used as control while groups 2, 3, and 4 were treated with chlorpyrifos (CPF; 14.9 mg/kg BW), abamectin (ABM; 30 mg/kg BW), and chlorpyrifos plus abamectin, respectively. Rats were treated daily with the tested compounds by oral gavages for 30 days. Results revealed that thiobarbituric acid-reactive substances (TBARS) levels were significantly increased in brain and kidney due to insecticides administration. On the other hand, reduced glutathione (GSH) and protein contents in addition to the activities of antioxidant enzymes, alkaline phosphatase (ALP), and acetylcholinesterase (AChE) were significantly decreased in rat organs. A significant induction in lactate dehydrogenase (LDH) activity, urea, and creatinine levels were also observed. The response was more pronounced in rats treated with both CPF and ABM. Results showed that the used insecticides had the propensity to cause significant oxidative damage in rat brain and kidney which is associated with marked perturbations in antioxidant defense system. It can be concluded that antioxidant enzymes can be used as potential biomarkers of toxicity associated with pesticides exposure.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX