Autor(en)
Wang, Shanquan; Chng, Kern Rei; Chen, Chen; Bedard, Donna L; He, Jianzhong
Titel
Genomic Characterization of Dehalococcoides mccartyi Strain JNA That Reductively Dechlorinates Tetrachloroethene and Polychlorinated Biphenyls
Teil von
  • Environmental science & technology, 2015-12-15, Vol.49 (24), p.14319-14325
Ort / Verlag
WASHINGTON: American Chemical Society
Links zum Volltext
Quelle
ACS Publications
Beschreibungen
Dehalococcoides mccartyi strain JNA detoxifies highly chlorinated polychlorinated biphenyl (PCB) mixtures via 85 distinct dechlorination reactions, suggesting that it has great potential for PCB bioremediation. However, its genomic and functional gene information remain unknown due to extremely slow growth of strain JNA with PCBs. In this study, we used tetracholorethene (PCE) as an alternative electron acceptor to grow sufficient biomass of strain JNA for subsequent genome sequencing and functional gene identification. Analysis of the assembled draft genome (1 462 509 bp) revealed the presence of 29 putative reductive dehalogenase (RDase) genes. Among them, JNA_RD8 and JNA_RD11 genes were highly transcribed in both PCE- and PCB-fed cultures. Furthermore, in vitro assays with crude cell lysate from PCE grown cells revealed dechlorination activity against both PCE and 2,2′,3,4,4′,5,5′-heptachlorobiphenyl. These data suggest that both JNA_RD8 and JNA_RD11 may be bifunctional PCE/PCB RDases. This study deepens the knowledge of organohalide respiration of PCBs and facilitates in situ PCB-bioremediation with strain JNA.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX
Die Universität der Informationsgesellschaft