Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Quantum information processing, 2017-09, Vol.16 (9), p.1-14, Article 233
2017

Details

Autor(en) / Beteiligte
Titel
Efficient classical simulation of the Deutsch–Jozsa and Simon’s algorithms
Ist Teil von
  • Quantum information processing, 2017-09, Vol.16 (9), p.1-14, Article 233
Ort / Verlag
New York: Springer US
Erscheinungsjahr
2017
Link zum Volltext
Quelle
SpringerLink (Online service)
Beschreibungen/Notizen
  • A long-standing aim of quantum information research is to understand what gives quantum computers their advantage. This requires separating problems that need genuinely quantum resources from those for which classical resources are enough. Two examples of quantum speed-up are the Deutsch–Jozsa and Simon’s problem, both efficiently solvable on a quantum Turing machine, and both believed to lack efficient classical solutions. Here we present a framework that can simulate both quantum algorithms efficiently, solving the Deutsch–Jozsa problem with probability 1 using only one oracle query, and Simon’s problem using linearly many oracle queries, just as expected of an ideal quantum computer. The presented simulation framework is in turn efficiently simulatable in a classical probabilistic Turing machine. This shows that the Deutsch–Jozsa and Simon’s problem do not require any genuinely quantum resources, and that the quantum algorithms show no speed-up when compared with their corresponding classical simulation. Finally, this gives insight into what properties are needed in the two algorithms and calls for further study of oracle separation between quantum and classical computation.
Sprache
Englisch
Identifikatoren
ISSN: 1570-0755, 1573-1332
eISSN: 1573-1332
DOI: 10.1007/s11128-017-1679-7
Titel-ID: cdi_proquest_journals_1928172350

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX