Balasundaram, S; Singh, Rampal
On finite Newton method for support vector regression
Teil von
  • Neural computing & applications, 2010-04-22, Vol.19 (7), p.967-977
Ort / Verlag
London: Springer-Verlag
Links zum Volltext
Springer Online Journals Complete
In this paper, we propose a Newton iterative method of solution for solving an ε-insensitive support vector regression formulated as an unconstrained optimization problem. The proposed method has the advantage that the solution is obtained by solving a system of linear equations at a finite number of times rather than solving a quadratic optimization problem. For the case of linear or kernel support vector regression, the finite termination of the Newton method has been proved. Experiments were performed on IBM, Google, Citigroup and Sunspot time series. The proposed method converges in at most six iterations. The results are compared with that of the standard, least squares and smooth support vector regression methods and of the exact solutions clearly demonstrate the effectiveness of the proposed method.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX
Die Universität der Informationsgesellschaft