Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Expression in Escherichia coli, Functional Characterization, and Tissue Distribution of Isoforms A and B of the Phosphate Carrier from Bovine Mitochondria
Ist Teil von
  • The Journal of biological chemistry, 1998-08, Vol.273 (35), p.22782-22787
Ort / Verlag
United States: Elsevier Inc
Erscheinungsjahr
1998
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The two isoforms of the mammalian mitochondrial phosphate carrier (PiC), A and B, differing in the sequence near the N terminus, arise from alternative splicing of a primary transcript of the PiC gene (Dolce, V., Iacobazzi, V., Palmieri, F., and Walker, J. E. (1994) J. Biol. Chem. 269, 10451–10460). To date, the PiC isoforms A and B have not been studied at the protein level. To explore the tissue-distribution and the potential functional differences between the two isoforms, polyclonal site-directed antibodies specific for PiC-A and PiC-B were raised, and the two bovine isoforms were obtained by expression in Escherichia coliand reconstituted into phospholipid vesicles. Western blot analysis demonstrated that isoform A is present in high amounts in heart, skeletal muscle, and diaphragm mitochondria, whereas isoform B is present in the mitochondria of all tissues examined. Heart and liver bovine mitochondria contained 69 and 0 pmol of PiC-A/mg of protein, and 10 and 8 pmol of PiC-B/mg of protein, respectively. In the reconstituted system the pure recombinant isoforms A and B both catalyzed the two known modes of transport (Pi/Pi antiport and Pi/H+ symport) and exhibited similar properties of substrate specificity and inhibitor sensitivity. However, they strongly differed in their kinetic parameters. The transport affinities of isoform B for phosphate and arsenate were found to be 3-fold lower than those of isoform A. Furthermore, the maximum transport rate of isoform B is about 3-fold higher than that of isoform A. These results support the hypothesis that the sequence divergence between PiC-A and PiC-B may have functional significance in determining the affinity and the translocation rate of the substrate through the PiC molecule.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX