Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Nature (London), 2012-03, Vol.483 (7388), p.190-193
2012

Details

Autor(en) / Beteiligte
Titel
Field-driven photoemission from nanostructures quenches the quiver motion
Ist Teil von
  • Nature (London), 2012-03, Vol.483 (7388), p.190-193
Ort / Verlag
London: Nature Publishing Group
Erscheinungsjahr
2012
Link zum Volltext
Quelle
PBSC : Psychology and Behavioral Sciences Collection - Journals
Beschreibungen/Notizen
  • Strong-field physics, an extreme limit of light-matter interaction, is expanding into the realm of surfaces and nanostructures from its origin in atomic and molecular science. The attraction of nanostructures lies in two intimately connected features: local intensity enhancement and sub-wavelength confinement of optical fields. Local intensity enhancement facilitates access to the strong-field regime and has already sparked various applications, whereas spatial localization has the potential to generate strong-field dynamics exclusive to nanostructures. However, the observation of features unattainable in gaseous media is challenged by many-body effects and material damage, which arise under intense illumination of dense systems. Here, we non-destructively access this regime in the solid state by employing single plasmonic nanotips and few-cycle mid-infrared pulses, making use of the wavelength-dependence of the interaction, that is, the ponderomotive energy. We investigate strong-field photoelectron emission and acceleration from single nanostructures over a broad spectral range, and find kinetic energies of hundreds of electronvolts. We observe the transition to a new regime in strong-field dynamics, in which the electrons escape the nanolocalized field within a fraction of an optical half-cycle. The transition into this regime, characterized by a spatial adiabaticity parameter, would require relativistic electrons in the absence of nanostructures. These results establish new degrees of freedom for the manipulation and control of electron dynamics on femtosecond and attosecond timescales, combining optical near-fields and nanoscopic sources.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX