Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China
Ist Teil von
  • Soil biology & biochemistry, 2015-04, Vol.83, p.29-39
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2015
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • Black soils (Mollisols) are one of the most important soil resources for maintaining food security in China, and they are mainly distributed in northeast China. A previous comprehensive study revealed the biogeographical distribution patterns of bacterial communities in the black soil zone. In this study, we used the same soil samples and analyzed the 454 pyrosequencing data for the nuclear ribosomal internal transcribed spacer (ITS) region to examine the fungal communities in these black soils. A total of 220,812 fungal ITS sequences were obtained from 26 soil samples that were collected across the black soil zone. These sequences were classified into at least 5 phyla, 20 classes, greater than 70 orders and over 350 genera, suggesting a high fungal diversity across the black soils. The diversity of fungal communities and distribution of several abundant fungal taxa were significantly related to the soil carbon content. Non-metric multidimensional scaling and canonical correspondence analysis plots indicated that the fungal community composition was most strongly affected by the soil carbon content followed by soil pH. This finding differs from the bacterial community results, which indicated that soil pH was the most important edaphic factor in determining the bacterial community composition of these black soils. A variance partitioning analysis indicated that the geographic distance contributed 20% of the fungal community variation and soil environmental factors that were characterized explained approximately 35%. A pairwise analysis revealed that the diversity of the fungal community was relatively higher at lower latitudes, which is similar to the findings for the bacterial communities in the same region and suggests that a latitudinal gradient of microbial community diversity might occur in the black soil zone. By incorporating our previous findings on the bacterial communities, we can conclude that contemporary factors of soil characteristics are more important than historical factor of geographic distance in shaping the microbial community in the black soil zone of northeast China. •Diversity and distribution of fungi in Mollisols were related to soil C content.•Soil C was the dominant factor in determining the fungal community compositions.•Geographic distance was another important factor in shaping communities.•A latitudinal diversity gradient of the fungal community was observed.•Soil fungal communities were spatially distributed in the black soil zone.
Sprache
Englisch
Identifikatoren
ISSN: 0038-0717
eISSN: 1879-3428
DOI: 10.1016/j.soilbio.2015.01.009
Titel-ID: cdi_crossref_primary_10_1016_j_soilbio_2015_01_009

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX