Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Coring operations, core sedimentology, and lithostratigraphy
Ist Teil von
  • Marine and petroleum geology, 2011-02, Vol.28 (2), p.311-331
Ort / Verlag
Elsevier Ltd
Erscheinungsjahr
2011
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • In February 2007, BP Exploration (Alaska), the U.S. Department of Energy, and the U.S. Geological Survey completed the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) in the Milne Point Unit on the Alaska North Slope. The program achieved its primary goals of validating the pre-drill estimates of gas hydrate occurrence and thickness based on 3-D seismic interpretations and wireline log correlations and collecting a comprehensive suite of logging, coring, and pressure testing data. The upper section of the Mount Elbert well was drilled through the base of ice-bearing permafrost to a casing point of 594 m (1950 ft), approximately 15 m (50 ft) above the top of the targeted reservoir interval. The lower portion of the well was continuously cored from 606 m (1987 ft) to 760 m (2494 ft) and drilled to a total depth of 914 m. Ice-bearing permafrost extends to a depth of roughly 536 m and the base of gas hydrate stability is interpreted to extend to a depth of 870 m. Coring through the targeted gas hydrate bearing reservoirs was completed using a wireline-retrievable system. The coring program achieved 85% recovery of 7.6 cm (3 in) diameter core through 154 m (504 ft) of the hole. An onsite team processed the cores, collecting and preserving approximately 250 sub-samples for analyses of pore water geochemistry, microbiology, gas chemistry, petrophysical analysis, and thermal and physical properties. Eleven samples were immediately transferred to either methane-charged pressure vessels or liquid nitrogen for future study of the preserved gas hydrate. Additional offsite sampling, analyses, and detailed description of the cores were also conducted. Based on this work, one lithostratigraphic unit with eight subunits was identified across the cored interval. Subunits II and Va comprise the majority of the reservoir facies and are dominantly very fine to fine, moderately sorted, quartz, feldspar, and lithic fragment-bearing to -rich sands. Lithostratigraphic and palynologic data indicate that this section is most likely early Eocene to late Paleocene in age. The examined units contain evidence for both marine and non-marine lithofacies, and indications that the depositional environment for the reservoir facies may have been shallower marine than originally interpreted based on pre-drill wireline log interpretations. There is also evidence of reduced salinity marine conditions during deposition that may be related to the paleo-climate and depositional conditions during the early Eocene.
Sprache
Englisch
Identifikatoren
ISSN: 0264-8172
eISSN: 1873-4073
DOI: 10.1016/j.marpetgeo.2010.02.001
Titel-ID: cdi_crossref_primary_10_1016_j_marpetgeo_2010_02_001

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX