Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Journal of hydrology (Amsterdam), 2018-06, Vol.561, p.557-572
2018

Details

Autor(en) / Beteiligte
Titel
Estimating retention potential of headwater catchment using Tritium time series
Ist Teil von
  • Journal of hydrology (Amsterdam), 2018-06, Vol.561, p.557-572
Ort / Verlag
Elsevier B.V
Erscheinungsjahr
2018
Link zum Volltext
Quelle
Elsevier ScienceDirect Journals Complete
Beschreibungen/Notizen
  • •Tritium time series to establish baseflow mean transit times in headwater catchment.•Chemical hydrograph separation using stream tritium data.•Tritium in stream never reaches rainfall Tritium input values. Headwater catchments provide substantial streamflow to rivers even during long periods of drought. Documenting the mean transit times (MTT) of stream water in headwater catchments and therefore the retention capacities of these catchments is crucial for water management. This study uses time series of 3H activities in combination with major ion concentrations, stable isotope ratios and radon activities (222Rn) in the Lyrebird Creek catchment in Victoria, Australia to provide a unique insight into the mean transit time distributions and flow systems of this small temperate headwater catchment. At all streamflows, the stream has 3H activities (<2.4 TU) that are significantly below those of rainfall (∼3.2 TU), implying that most of the water in the stream is derived from stores with long transit times. If the water in the catchment can be represented by a single store with a continuum of ages, mean transit times of the stream water range from ∼6 up to 40 years, which indicates the large retention potential for this catchment. Alternatively, variations of 3H activities, stable isotopes and major ions can be explained by mixing between of young recent recharge and older water stored in the catchment. While surface runoff is negligible, the variation in stable isotope ratios, major ion concentrations and radon activities during most of the year is minimal (±12%) and only occurs during major storm events. This suggests that different subsurface water stores are activated during the storm events and that these cease to provide water to the stream within a few days or weeks after storm events. The stores comprise micro and macropore flow in the soils and saprolite as well as the boundary between the saprolite and the fractured bed rock. Hydrograph separations from three major storm events using Tritium, electrical conductivity and selected major ions as well a δ18O suggest a minimum of 50% baseflow at most flow conditions. We demonstrate that headwater catchments can have a significant storage capacity and that the relationship between long-water stores and fast storm event subsurface flow is complex. The study also illustrates that using 3H to determine mean transit times is probably only valid for baseflow conditions where the catchment can be represented as a single store. The results of this study reinforce the need to protect headwater catchments from contamination and extreme land use changes.
Sprache
Englisch
Identifikatoren
ISSN: 0022-1694
eISSN: 1879-2707
DOI: 10.1016/j.jhydrol.2018.04.030
Titel-ID: cdi_crossref_primary_10_1016_j_jhydrol_2018_04_030

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX