Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Effect of vegetation type on treatment performance and bioelectric production of constructed wetland modules combined with microbial fuel cell (CW-MFC) treating synthetic wastewater
Ist Teil von
  • Environmental science and pollution research international, 2018-03, Vol.25 (9), p.8777-8792
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2018
Link zum Volltext
Quelle
SpringerLink (Online service)
Beschreibungen/Notizen
  • An operation of microcosm-constructed wetland modules combined with microbial fuel cell device (CW-MFC) was assessed for wastewater treatment and bioelectric generation. One of the crucial aims of the present experiment is also to determine effect of vegetation on wastewater treatment process and bioelectric production in wetland matrix with microbial fuel cell. Accordingly, CW-MFC modules with vegetation had higher treatment efficiency compared to unplanted wetland module, and average COD, NH 4 + , and TP removal efficiency in vegetated wetland modules were ranged from 85 to 88%, 95 to 97%, and 95 to 97%, respectively. However, the highest NO 3 − removal (63%) was achieved by unplanted control module during the experiment period. The maximum average output voltage, power density, and Coulombic efficiency were obtained in wetland module vegetated with Typha angustifolia for 1.01 ± 0.14 V, 7.47 ± 13.7 mWatt/m 2 , and 8.28 ± 10.4%, respectively. The results suggest that the presence of Typha angustifolia vegetation in the CW-MFC matrix provides the benefits for treatment efficiency and bioelectric production; thus, it increases microbial activities which are responsible for biodegradation of organic compounds and catalyzed to electron flow from anode to cathode. Consequently, we suggest that engineers can use vegetated wetland matrix with Typha angustifolia in CW-MFC module in order to maximize treatment efficiency and bioelectric production.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX