Autor(en)
CHEN Peng; DUONG XuanThinh; LI Ji; SONG Liang; YAN LiXin
Titel
Carleson measures, BMO spaces and balayages associated to Schrdinger operators
Teil von
  • Science China. Mathematics, 2017, Vol.60 (11), p.2077-2092
Links zum Volltext
Quelle
Springer Online Journals Complete
Beschreibungen
Let L be a Schrdinger operator of the form L =-? + V acting on L~2(R~n), n≥3, where the nonnegative potential V belongs to the reverse Hlder class B_q for some q≥n. Let BMO_L(R~n) denote the BMO space associated to the Schrdinger operator L on R~n. In this article, we show that for every f ∈ BMO_L(R~n) with compact support, then there exist g ∈ L~∞(R~n) and a finite Carleson measure μ such that f(x) = g(x) + S_(μ,P)(x) with ∥g∥∞ + |||μ|||c≤ C∥f∥BMO_L(R~n), where S_(μ,P)=∫(R_+~(n+1))Pt(x,y)dμ(y, t),and Pt(x, y) is the kernel of the Poisson semigroup {e-~(t(L)~(1/2))}t〉0 on L~2(R~n). Conversely, if μ is a Carleson measure, then S_(μ,P) belongs to the space BMO_L(R~n). This extends the result for the classical John-Nirenberg BMO space by Carleson(1976)(see also Garnett and Jones(1982), Uchiyama(1980) and Wilson(1988)) to the BMO setting associated to Schrdinger operators.
Format
Sprache(n)
Englisch
Identifikator(en)
ISSN: 1674-7283
ISSN: 1869-1862
Links zum Inhalt
Schlagwörter
BMO空间, Carleson测度, class, compact, kernel, show, Wilson, 算子
Systemstelle
Signatur

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX
Die Universität der Informationsgesellschaft