Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 3

Details

Autor(en) / Beteiligte
Titel
Physical chemistry of gas-liquid interfaces
Ort / Verlag
Amsterdam, Netherlands ; : Elsevier,
Erscheinungsjahr
2018
Beschreibungen/Notizen
  • Includes index.
  • Front Cover -- Physical Chemistry of Gas-Liquid Interfaces -- Developments in Physical & Theoretical Chemistry -- Physical Chemistry of Gas-Liquid Interfaces -- Copyright -- Contents -- List of Contributors -- Foreword -- REFERENCES -- 1 - Molecular Perspective of Gas-Liquid Interfaces: What Can Be Learned From Theoretical Simulations? -- 1. INTRODUCTION -- 2. COMPUTATIONAL METHODOLOGIES -- 2.1 FORCE FIELDS -- 2.2 SIMULATION TECHNIQUES -- 3. INTERFACIAL PROPERTIES AT NEAT LIQUID INTERFACES -- 3.1 THERMODYNAMIC PROPERTIES -- 3.2 DENSITY DISTRIBUTIONS -- 3.3 ORIENTATIONS AND LOCAL STRUCTURES -- 3.4 DYNAMICAL PROPERTIES -- 4. ADSORPTION AND MASS TRANSPORT ACROSS INTERFACES -- 4.1 SOLUTE DISTRIBUTION AND EQUILIBRIUM SOLVATION -- 4.2 CHEMICAL REACTIONS AT LIQUID INTERFACES -- 4.3 FREE ENERGY OF MASS TRANSPORT -- 5. CONCLUSIONS AND OUTLOOK -- REFERENCES -- 2 - Molecular Simulations of Volatile Organic Interfaces -- 1. ORGANIC LIQUID-VAPOR INTERFACES -- 2. ACHIEVING MOLECULAR RESOLUTION WITH COMPUTATIONAL METHODS -- 2.1 THE COMPUTATIONAL MICROSCOPE -- 2.2 MOLECULAR DYNAMICS SIMULATIONS -- 2.3 STANDARD PRACTICE AND DEFINITIONS -- 2.3.1 Building the Liquid-Vapor Interface -- 2.3.2 Defining the Interface -- 2.3.2.1 Gibbs Dividing Surface -- 2.3.2.2 Instantaneous Interface -- 2.3.3 Selvage Region -- 2.4 COMPUTATIONAL METHODS EMPLOYED IN THIS WORK -- 2.4.1 Molecular Dynamics Parameters and Protocol -- 2.4.2 Analysis -- 3. RESULTS AND DISCUSSION -- 3.1 DENSITY AND ENERGY PROFILES -- 3.2 RADIAL DISTRIBUTION FUNCTIONS -- 3.3 FLUCTUATION OF THE INSTANTANEOUS INTERFACE -- 3.4 BENZENE RING STACKING IS UNAFFECTED BY PROXIMITY TO THE INTERFACE -- 3.5 DIFFUSION -- 4. CONCLUSIONS AND OPPORTUNITIES FOR FUTURE WORK -- ACKNOWLEDGMENTS -- REFERENCES -- 3 - Fluctuations and Adsorption at Liquid-Vapor Interfaces -- 1. INTRODUCTION -- 2. INTERFACIAL FLUCTUATIONS.
  • 2.1 DENSITY-DENSITY CORRELATIONS -- 2.2 DENSITY-DENSITY CORRELATIONS AT LIQUID-VAPOR INTERFACES -- 2.3 LOCAL COMPRESSIBILITY -- 2.4 SURFACE WAVES -- 3. THERMODYNAMICS OF ADSORPTION -- 3.1 IMPORTANT ASSUMPTIONS -- 3.2 FREE ENERGY CHANGE -- 3.3 THE FLUCTUATION PART OF FREE ENERGY CHANGE -- 3.4 SOLUTE-INDUCED CHANGES -- 4. QUANTIFYING THE ROLE OF INTERFACIAL FLUCTUATIONS IN ADSORPTION -- 4.1 RIGOROUS APPROACH -- 4.2 INDIRECT APPROACH -- 4.3 DEPENDENCE ON INTERMOLECULAR INTERACTIONS -- 4.4 IMPORTANCE OF UNDERSTANDING THE ROLE OF INTERFACIAL FLUCTUATIONS IN ADSORPTION -- 5. CONCLUDING REMARKS -- ACKNOWLEDGMENTS -- REFERENCES -- 4 - Ionization of Surfactants at the Air-Water Interface -- 1. BACKGROUND -- 1.1 IONIC SURFACTANTS AND APPLICATIONS -- 1.2 IONIC STRUCTURE OF COUNTERIONS NEAR THE AIR-WATER INTERFACE -- 1.3 IONIZATION OF SURFACTANTS -- 2. EXPERIMENTAL METHODS -- 2.1 EQUILIBRIUM CONSTANT OF IONIZATION -- 2.2 SURFACE TENSION -- 2.3 NEUTRON REFLECTOMETRY -- 2.4 SURFACTANT-INDUCED CHANGE IN SURFACE POTENTIAL -- 2.5 OTHER METHODS -- 2.6 SUMMARY -- 3. THEORETICAL MODELING -- 3.1 IONIC BINDING -- 3.2 REACTION EQUILIBRIUM -- 3.3 THERMODYNAMIC EQUILIBRIUM -- 3.4 COMPARISON AMONG THE THREE METHODS -- 4. COUPLED IONIZATION/ADSORPTION PHENOMENA AT THE MOLECULAR LEVEL -- 4.1 ARRANGEMENT OF WATER MOLECULES AT THE SURFACE -- 4.2 HYDRONIUM IONS -- 4.3 HYDROPHILICITY OF IONIC STATES -- 4.4 INFLUENCE OF THE SURFACTANT TAIL -- 5. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- 5 - Vibrational Spectroscopy of Gas-Liquid Interfaces -- 1. WHAT DOES VIBRATIONAL SPECTROSCOPY MEASURE? -- 2. BULK VERSUS INTERFACE -- 3. VIBRATIONAL SPECTROSCOPY OF LIQUID SURFACES -- 4. INFRARED AND RAMAN SPECTROSCOPY -- 5. NONLINEAR VIBRATIONAL SPECTROSCOPY -- 6. SAMPLING MODES OF AIR-LIQUID SURFACES -- 7. APPLICATIONS FOR VIBRATIONAL SPECTROSCOPY AT GAS-LIQUID INTERFACES.
  • 8. INFRARED REFLECTION-ABSORPTION SPECTROSCOPY -- 9. GLANCING-ANGLE RAMAN SPECTROSCOPY -- 10. VIBRATIONAL SUM-FREQUENCY GENERATION -- 11. SUMMARY AND FUTURE OUTLOOK -- REFERENCES -- 6 - X-Ray Excited Electron Spectroscopy to Study Gas-Liquid Interfaces of Atmospheric Relevance -- 1. INTRODUCTION -- 2. INTRODUCTION TO PHOTOELECTRON SPECTROSCOPY AND ELECTRON DETECTED X-RAY ABSORPTION SPECTROSCOPY -- 3. TECHNICAL IMPLEMENTATION AND SAMPLE ENVIRONMENTS -- 4. STRUCTURE AND COMPOSITION AT THE GAS-AQUEOUS SOLUTION INTERFACE -- 5. THE NATURE AND LOCAL ENVIRONMENT OF SOLUTES IN FROZEN SYSTEMS -- 6. EMERGING DEVELOPMENTS -- REFERENCES -- 7 - Liquid Surface X-Ray Scattering -- 1. OVERVIEW -- 2. THEORY AND INSTRUMENTATION -- 2.1 THEORY FOR LIQUID SURFACE SCATTERING TECHNIQUES -- 2.1.1 X-Ray Reflectivity -- 2.1.2 Grazing Incident X-Ray Diffraction -- 2.1.3 X-Ray Fluorescence Near Total Reflection -- 2.1.4 Other Liquid Surface Scattering Techniques -- 2.2 LIQUID SURFACE REFLECTOMETER -- 2.2.1 Single-Crystal Reflectometer -- 2.2.2 Double-Crystal Reflectometer -- 2.2.3 Energy-Dispersive Reflectometer -- 3. EXAMPLE APPLICATIONS AT THE AIR-AQUEOUS INTERFACE -- 3.1 AIR-PURE WATER INTERFACE -- 3.2 ION DISTRIBUTIONS WITHOUT MONOLAYERS -- 3.3 ION DISTRIBUTIONS IN THE PRESENCE OF SURFACTANTS -- 3.4 BIOLOGICAL SYSTEMS -- 3.4.1 Proteins, DNA, Biomolecules, and Their Interactions With Cell Membranes -- 3.4.2 Biomineralization -- 3.5 NANOPARTICLES AT AIR-WATER INTERFACES -- 4. EXAMPLE APPLICATIONS BEYOND THE AIR-AQUEOUS INTERFACE -- 4.1 NORMAL ALKANES AND DIELECTRIC LIQUIDS -- 4.2 ROOM TEMPERATURE IONIC LIQUIDS -- 4.3 LIQUID METALS -- 4.4 AIR-LIQUID CRYSTAL INTERFACES -- 5. FUTURE PROSPECTS -- ACKNOWLEDGMENTS -- REFERENCES -- 8 - Particle Beam Scattering From the Vacuum-Liquid Interface -- 1. INTRODUCTION -- 1.1 BENEFITS OF A VACUUM ENVIRONMENT.
  • 1.1.1 Experiments Under Vacuum Remove Most Sources of Potential Surface Contaminants -- 1.1.2 Creating a Vacuum Increases the Mean Free Path of Gas-Phase Species -- 1.2 EXPERIMENTAL APPROACHES USED TO OVERCOME THE LIQUID VAPOR PRESSURE PROBLEM IN VACUUM -- 1.2.1 Low-Vapor Pressure Liquids -- 1.2.2 Fenn Wheel Approach -- 1.2.3 Liquid Microjets -- 2. THE SCATTERING APPROACHES -- 2.1 INTRODUCTION TO ATOMIC AND MOLECULAR BEAMS -- 2.2 THE APPROACH OF BEAM SCATTERING WITH TIME-OF-FLIGHT TECHNIQUES -- 2.2.1 Translational Energy Transfer Characteristics -- 2.2.2 Classic Studies of Gas-Liquid Scattering -- 2.3 THE APPROACH OF BEAM SCATTERING WITH LASER SPECTROSCOPIC TECHNIQUES -- 2.3.1 Doppler Spectroscopy -- 2.3.2 Laser-Induced Fluorescence -- 2.4 THE APPROACH OF BEAM SCATTERING WITH VELOCITY MAP IMAGING: A NEW FRONTIER? -- 3. THE THEORETICAL APPROACHES -- 3.1 KINEMATIC MODELS -- 3.1.1 Building on the "Hard-Cube" Family -- 3.1.2 Applying Newton Diagrams to Arrive at the "Soft-Sphere" Kinematic Model -- 3.2 MOLECULAR DYNAMICS TRAJECTORIES PROVIDE INSIGHT INTO EXPERIMENTAL RESULTS -- 3.2.1 Projectile Orientation, the Surface, and Other Aspects Influencing the Potential Energy Surface -- 3.2.2 Insights From Molecular Dynamics Scattering With Self-Assembled Monolayers -- 3.2.2.1 Normal Mode Vibrational Analysis -- 3.2.2.2 Displacing an Effective Surface Mass-Momentum Matching -- 3.2.3 Molecular Dynamics Scattering With Realistic Liquid Models -- 3.2.3.1 Classical Molecular Dynamics Studies of Nonreactive Gas-Liquid Scattering -- 3.2.3.2 QM/MM Studies of Reactive Gas-Liquid Scattering -- 4. OUTLOOK AND NEEDS -- REFERENCES -- 9 - Microfluidics and Interfacial Chemistry in the Atmosphere -- 1. INTRODUCTION -- 2. MICROFLUIDICS AND FABRICATION -- 2.1 MICROFLUIDIC FABRICATION -- 2.2 SOFT LITHOGRAPHY -- 3. OPTICAL SPECTROSCOPY IN AIR-LIQUID STUDIES.
  • 3.1 INFRARED SPECTROSCOPY -- 3.2 RAMAN SPECTROSCOPY -- 3.3 SUM-FREQUENCY GENERATION SPECTROSCOPY -- 4. SYSTEM FOR ANALYSIS AT LIQUID AND VACUUM INTERFACE AND ITS APPLICATION AT THE AIR-LIQUID INTERFACE -- 4.1 SYSTEM FOR ANALYSIS AT LIQUID AND VACUUM INTERFACE -- 4.2 DESIGN CONSIDERATIONS -- 4.3 DEMONSTRATION OF FEASIBILITY -- 4.4 SALVI ENABLED LIQUID SIMS -- 4.5 ANALYTICAL CAPABILITY -- 4.6 LIQUID SECONDARY ION MASS SPECTROMETRY OPTIMIZATION -- 4.7 SYSTEM FOR ANALYSIS AT LIQUID AND VACUUM INTERFACE APPLICATIONS -- 4.7.1 Nanoparticle Characterization -- 4.7.2 Atmospheric Photochemistry -- 4.7.3 Aerosol Transformation -- 4.7.4 Other Applications -- 5. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- 10 - Gas-Liquid Interfaces in the Atmosphere: Impacts, Complexity, and Challenges -- 1. INTRODUCTION -- 2. CHEMISTRY AT THE OCEAN-ATMOSPHERE INTERFACE -- 2.1 ORIGIN AND PROPERTIES OF THE SEA SURFACE MICROLAYER -- 2.2 OCEAN SURFACE CHEMISTRY AND TRACE GAS FLUXES -- 2.3 SEA SPRAY AEROSOL PRODUCTION -- 2.4 PHOTOCHEMISTRY AT THE AIR-SEA INTERFACE -- 3. ATMOSPHERIC CHEMISTRY OF THE AQUEOUS PHASE -- 3.1 TRACE GAS INTERACTIONS WITH AQUEOUS AEROSOLS AND DROPLETS -- 3.2 TRANSFER OF OXIDANTS TO THE AQUEOUS PHASE -- 3.3 PHOTOCHEMICAL PROCESSES IN THE ATMOSPHERIC AQUEOUS PHASE -- 3.4 PRODUCTION OF REACTIVE OXYGEN SPECIES -- 4. PARTITIONING OF SURFACE-ACTIVE COMPOUNDS IN AEROSOLS -- 4.1 SELECTIVITY OF SURFACE-ACTIVE COMPOUNDS AT INTERFACES -- 4.2 GAS-PARTICLE PARTITIONING AND PARTICLE GROWTH -- 4.3 SURFACE TENSION EFFECTS ON CLOUD DROPLET NUCLEATION -- 5. TECHNICAL CHALLENGES IN THE STUDY OF ENVIRONMENTALLY RELEVANT SYSTEMS -- 5.1 SURFACE-SELECTIVE TECHNIQUES -- 5.2 DEVELOPMENT OF EXPERIMENTAL TOOLS FOR COMPLEX ENVIRONMENTAL SYSTEMS -- 6. SUMMARY -- ACKNOWLEDGMENTS -- REFERENCES -- 11 - New Particle Formation and Growth: Creating a New Atmospheric Phase Interface.
  • 1. OVERVIEW.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 0-12-813642-1, 0-12-813641-3
Titel-ID: 99374151955806441
Format
1 online resource (492 pages)
Schlagworte
Chemistry, Physical and theoretical, Gas-liquid interfaces