Am Donnerstag, den 15.8. kann es zwischen 16 und 18 Uhr aufgrund von Wartungsarbeiten des ZIM zu Einschränkungen bei der Katalognutzung kommen.
Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 74
First edition, [2024]
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Microgrid Methodologies and Emergent Applications
Auflage
First edition
Ort / Verlag
Kidlington, England : Megan Ball,
Erscheinungsjahr
[2024]
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Front Cover -- Microgrid Methodologies and Emergent Applications -- Copyright Page -- Contents -- List of contributors -- About the authors -- Preface -- Acknowledgment -- List of acronyms -- I. Methodologies -- 1 Overview of microgrid -- 1.1 Introduction -- 1.2 Overview of the key characteristics of microgrid -- 1.2.1 Operating characteristics -- 1.2.2 Structural characteristics -- 1.2.2.1 AC microgrid -- 1.2.2.2 DC microgrid -- 1.2.2.3 AC/DC hybrid microgrid -- 1.2.3 Scale and voltage level -- 1.3 Global development of microgrids -- 1.3.1 US -- 1.3.2 EU -- 1.3.3 Japan -- 1.3.4 China -- 1.4 Typical pilot projects of microgrids -- 1.4.1 Santa Rita Jail microgrid in the United States -- 1.4.1.1 Plug-and-play -- 1.4.1.2 Seamless switching -- 1.4.2 Sendai microgrid project in Japan -- 1.4.2.1 Multilevel power quality service -- 1.4.2.2 Integrated power supply system -- 1.4.3 "Net-Zero Energy Houses" microgrid in Canada -- 1.4.3.1 Building-integrated photovoltaic/thermal system -- 1.4.3.2 Two stage geothermal heat pump -- 1.4.3.3 Social and economic benefits -- 1.4.4 Daxing Airport microgrid in China -- 1.5 Organization of the book -- References -- 2 Modeling -- 2.1 Introduction -- 2.2 Modeling of microgrid -- 2.2.1 PV system -- 2.2.2 Wind energy conversion systems -- 2.2.2.1 Fixed-speed wind energy conversion systems -- 2.2.2.1.1 Aerodynamic system -- 2.2.2.1.2 Pitch control module -- 2.2.2.1.3 Shafting module -- 2.2.2.2 Variable-speed wind energy conversion systems -- 2.2.2.2.1 Permanent magnet synchronous generator model -- 2.2.2.2.2 Machine side converter controller model -- 2.2.2.2.3 Grid side converter controller model -- 2.2.2.2.4 Pitch control module -- 2.2.3 Combined heat and power -- 2.2.4 Fuel cells -- 2.2.5 Battery energy storage system -- 2.2.6 Ground source heat pump -- 2.2.7 Ice storage system.
  • 2.2.8 Conventional water-cooled chiller system -- 2.3 Summary -- References -- 3 Planning and design of microgrids -- 3.1 Introduction -- 3.2 Theories and methods of microgrid planning and design -- 3.2.1 Procedures of microgrid planning and design -- 3.2.1.1 Data collection and analysis -- 3.2.1.2 Microgrid planning and design modeling -- 3.2.1.3 Evaluation and sensitivity analysis -- 3.2.2 Problem formulation -- 3.3 Tools of microgrid planning and design -- 3.4 Case study -- 3.5 Summary -- Reference -- 4 Control and protection of microgrids -- 4.1 Introduction -- 4.2 Control strategies of microgrids -- 4.2.1 Control strategies of microgrids with traditional diesel generators -- 4.2.1.1 Control of diesel generators -- 4.2.1.2 Control of ESSs -- 4.2.1.2.1 Grid-following control -- 4.2.1.2.2 Grid-forming control -- 4.2.2 Basic control strategy of microgrids with new energy resources and storage -- 4.2.2.1 Master-slave control -- 4.2.2.2 Peer-to-peer droop control -- 4.3 Operation modes switching control -- 4.3.1 Transition from grid-connected mode to islanded mode -- 4.3.1.1 Active transition from grid-connected mode to islanded mode -- 4.3.1.2 Passive transition from grid-connected mode to islanded mode -- 4.3.2 Transition from islanded mode to grid-connected mode -- 4.4 Fault characteristics of microgrids -- 4.4.1 The condition UPCC%3eUth -- 4.4.1.1 T0-T1 -- 4.4.1.2 T1-T2 -- 4.4.1.3 T2-T3 -- 4.4.2 The condition UPCC%3cUth -- 4.4.2.1 T0-T1 -- 4.4.2.2 T1-T2 -- 4.4.2.3 T2-T3 -- 4.4.3 Influence of current-limiting link -- 4.5 Microgrid protection technologies -- 4.5.1 Protection at PCC -- 4.5.1.1 PCC protection in grid-connected mode -- 4.5.1.1.1 Reverse power protection -- 4.5.1.1.2 Overcurrent protection -- 4.5.1.1.3 Overvoltage/undervoltage protection -- 4.5.1.1.4 Over/under frequency protection -- 4.5.1.2 PCC protection in islanded mode.
  • 4.5.2 Microgrid line protection -- 4.5.2.1 Adaptive protection -- 4.5.2.2 Differential protection -- 4.5.2.3 Voltage protection -- 4.5.2.4 Sequence component protection -- 4.5.2.5 Fault location protection -- 4.5.3 Case studies -- 4.5.3.1 Calculation of feeder protection setting without considering microgrid -- 4.5.3.2 Influence of microgrids access under downstream fault condition -- 4.5.3.2.1 Influence on downstream protection -- 4.5.3.2.2 Influence on upstream protection -- 4.5.3.3 Influence of microgrids access under upstream fault condition -- 4.6 Islanding detection technologies -- 4.6.1 Basic concepts of islanding detection -- 4.6.2 Passive islanding detection -- 4.6.2.1 Basic concepts of passive islanding detection -- 4.6.2.1.1 Over/under voltage, over/under frequency detection -- 4.6.2.1.2 Harmonics detection -- 4.6.2.1.3 Phase jump detection -- 4.6.2.1.4 Change rate of key power detection -- 4.6.2.2 A classical passive islanding detection method -- 4.6.3 Active islanding detection -- 4.6.3.1 Basic concepts of active islanding detection -- 4.6.3.1.1 Active current disturbance -- 4.6.3.1.2 Active frequency drifting -- 4.6.3.1.3 Slide mode frequency shifting -- 4.6.3.1.4 Automatic phase shift -- 4.6.3.2 A classical active islanding detection method -- 4.6.3.2.1 Reactive power disturbance injection -- 4.6.3.2.2 Active islanding detection method based on reactive power disturbance injection -- 4.6.4 Case studies -- 4.6.4.1 Performance of passive detection methods during power imbalance -- 4.6.4.2 Performance of passive detection methods during power balance -- 4.6.4.3 Performance of active detection methods during power balance -- 4.7 Summary -- References -- 5 Microgrid operation optimization -- 5.1 Introduction -- 5.1.1 Forecasting module -- 5.1.2 Decision-making module -- 5.1.3 Human-machine interfaces.
  • 5.1.4 Supervisory control and data acquisition -- 5.2 Optimization modeling of microgrid -- 5.2.1 Deterministic optimization -- 5.2.1.1 Objective function -- 5.2.1.2 Constraints -- 5.2.2 Stochastic optimization -- 5.2.2.1 Scenario generation -- 5.2.2.2 Scenario reduction -- 5.2.3 Robust optimization -- 5.2.3.1 Box uncertainty set -- 5.2.3.2 Ellipsoidal uncertainty set -- 5.2.3.3 Polyhedral uncertainty set -- 5.3 Coordinated optimization of multi-microgrid system -- 5.3.1 Underlying physical topology of multi-microgrid system -- 5.3.2 Coordinated optimization technologies for multi-microgrid -- 5.4 Case studies -- 5.5 Summary -- References -- 6 Energy trading and markets in microgrids -- 6.1 Introduction -- 6.1.1 Who trades energy? -- 6.1.2 What forms of energy are traded? -- 6.1.3 What are needed to enable microgrid energy trading? -- 6.1.4 What do people care about microgrid energy trading? -- 6.2 Temporal scales of microgrid energy trading -- 6.2.1 Long/medium-term energy trading -- 6.2.2 Short-term energy trading -- 6.2.3 Postdelivery arrangements -- 6.3 Spatial scales of microgrid energy trading -- 6.4 Infrastructure for microgrid energy trading -- 6.4.1 Energy infrastructure -- 6.4.2 Digital infrastructure -- 6.5 Commercial and regulatory arrangements -- 6.6 Case studies -- 6.6.1 Day-ahead peer-to-peer energy trading via continuous double auction -- 6.6.2 A settlement mechanism for energy trading in microgrids -- 6.6.3 Hierarchical peer-to-peer energy trading for microgrids in distribution networks -- 6.7 Summary -- References -- II. Applications -- 7 Islanded microgrids -- 7.1 Introduction -- 7.2 Key parameters/system settings -- 7.2.1 System structure and configuration -- 7.2.2 Energy management strategy -- 7.2.2.1 Energy storage system grid-following strategy -- 7.2.2.2 Energy storage system grid-forming strategy -- 7.3 Data analysis.
  • 7.4 Summary -- 8 AC/DC hybrid microgrids -- 8.1 Introduction -- 8.2 Key parameters/system settings -- 8.2.1 System structure and configuration -- 8.2.2 Energy management strategy -- 8.3 Data analysis -- 8.4 Summary -- 9 Multi-vector energy microgrids -- 9.1 Introduction -- 9.1.1 Fuel arbitrage/shifting -- 9.1.2 Use of on-site energy storage -- 9.1.3 Demand shifting/flexibility -- 9.2 Key parameters/system settings -- 9.3 Data analysis -- 9.3.1 Electricity demand and supply -- 9.3.2 Average daily electricity demand profile by hour -- 9.3.3 Variations of the daily heat demand -- 9.3.4 Relation between electricity and heat -- 9.4 Evaluations -- 9.5 Summary -- References -- 10 DC microgrids for electric vehicle wireless charging -- 10.1 Introduction -- 10.2 Planning of DC microgrid -- 10.2.1 Capacity planning -- 10.2.2 Topology and voltage level design -- 10.3 Control system of DC microgrid -- 10.3.1 Power flow management -- 10.3.2 Local controllers -- 10.3.2.1 PV generation control -- 10.3.2.2 WT generation control -- 10.3.2.3 DC bus voltage control -- 10.3.2.4 Uninterruptible power supply -- 10.3.2.5 Wireless charging machine -- 10.4 DC bus voltage controller design and analysis -- 10.5 SCADA, protection, and EMS -- 10.5.1 Hardware structure of DC microgrid SCADA -- 10.5.2 Protection -- 10.5.3 Black start -- 10.5.4 EMS -- 10.5.5 Software structure of DC microgrid SCADA -- 10.6 DC microgrid demonstration -- 10.7 Summary -- References -- 11 Technical and economical evaluation of Smart Integrated Energy Microgrid -- 11.1 Introduction -- 11.2 System design -- 11.2.1 Energy bus -- 11.2.2 Planning tool for Smart Integrated Energy Microgrid -- 11.2.3 Coordinated operation of Smart Integrated Energy Microgrid -- 11.3 System evaluation -- 11.3.1 Cost-benefit evaluation -- 11.3.1.1 Construction investment.
  • 11.3.1.2 The benefit of control and energy management platform.
  • Microgrid Methodologies and Applications provides step-by-guide guidance on the implementation of microgrids projects that is informed by current scientific principles, emergent technologies such as modern power electronic interfaces, energy storage systems, multi-vector energy systems, and a close study of recent case studies. Addressing the full end-to-end microgrid project lifecycle, the work encompasses planning, design, operation, control, trading and evaluation, with a significant focus on novel business model, regulation and policy considerations. The book explains to readers how they can operationalize robust microgrids which account for engineering reality, uncertainties, and operating constraints.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 0-323-95350-6
OCLC-Nummer: 1412620239
Titel-ID: 99373342079606441
Format
1 online resource (231 pages)
Schlagworte
Energy storage, Microgrids (Smart power grids)