Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 915

Details

Autor(en) / Beteiligte
Titel
Advanced sensor technology : biomedical, environmental, and construction applications
Ort / Verlag
Amsterdam, Netherlands ; : Elsevier,
Erscheinungsjahr
2023
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Front Cover -- Advanced Sensor Technology -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Fundamental aspects -- 1 Sensor technology: past, present, and future -- 1.1 Introduction -- 1.2 Milestones in sensor development -- 1.3 State-of-the-art in sensor technology -- 1.4 The way ahead in sensing opportunities -- 1.5 Conclusions and remarks -- Acknowledgments -- References -- 2 Fundamentals of sensor technology -- 2.1 Sensor, actuator, and transducer fundamentals -- 2.1.1 Introduction -- 2.1.2 Sensor characteristics -- 2.1.3 Signal processing of sensors -- 2.1.3.1 Signals of sensors and transducers -- 2.1.3.2 Signal conditioning of sensors -- 2.2 Sensors' classification -- 2.2.1 Chemical sensors -- 2.2.1.1 Overview -- 2.2.1.2 Types of chemosensors -- 2.2.2 Biosensors -- 2.2.2.1 Overview -- 2.2.2.2 Types of biosensors -- 2.2.3 Electrochemical sensors -- 2.2.3.1 Overview -- 2.2.3.2 Types of electrochemical sensors -- 2.2.4 Optical sensors -- 2.2.4.1 Overview -- 2.2.4.2 Types of optical sensors -- 2.3 Sensor applications -- 2.3.1 Applications of electrochemical sensors -- 2.3.2 Applications of optical sensors -- 2.3.3 Applications of nanomaterial-based-sensors for water monitoring -- 2.3.3.1 Metal and carbon-based sensors for water monitoring -- 2.3.3.2 Polymer-based sensors for water monitoring -- 2.4 Innovative sensor technologies -- 2.5 Conclusion and future aspects -- References -- 2 Biomedical applications -- 3 Biosensors for virus detection -- 3.1 Introduction -- 3.1.1 Structure and infection mechanism of common viruses -- 3.1.2 Current methods in virus detection -- 3.2 Antibody-based biosensors for virus detection -- 3.3 Nucleic acid-based biosensors for virus detection -- 3.4 Peptide-based biosensors for virus detection -- 3.5 Molecularly imprinted polymer-based biosensors for virus detection.
  • 3.6 Conclusion and remarks -- Acknowledgments -- References -- 4 Biosensors for bacteria detection -- 4.1 Introduction -- 4.2 Whole-cell biosensors for bacteria detection -- 4.3 Nanomaterials-based biosensors for bacteria detection -- 4.3.1 Noble metal nanoparticles -- 4.3.2 Carbon-based nanomaterials -- 4.3.3 Semiconductor nanocrystals -- 4.4 Various biosensors for bacteria detection -- 4.4.1 Optical biosensors -- 4.4.2 Electrochemical biosensors -- 4.4.3 Mechanical biosensors -- 4.5 Integrated biosensing platforms for multiplexed bacteria detection -- 4.6 Conclusion and perspectives -- References -- 5 Biosensors for drug of abuse detection -- 5.1 Introduction -- 5.2 Drug biosensing -- 5.2.1 Colorimetric approach -- 5.2.1.1 Enzymes in colorimetric approach -- 5.2.1.2 Aptamers in colorimetric approaches -- 5.2.2 Fluorescence approaches -- 5.2.2.1 Aptamers in fluorescence approaches -- 5.2.2.1.1 Labeled aptamers in fluorescence approaches -- 5.2.2.1.2 Label-free aptamers in fluorescence approaches -- 5.2.2.1.3 Other strategies of aptamer-based fluorescence abuse drug biosensing -- 5.2.2.1.3.1 Messenger activation upon aptamer binding -- 5.2.2.1.3.2 Fluorophore displacement upon aptamer binding -- 5.2.2.1.3.3 Repositioning of quencher upon aptamer binding -- 5.2.2.2 Enzymes in fluorescence approaches -- 5.2.3 Electrochemical approaches -- 5.2.3.1 Antibodies in electrochemical approaches -- 5.2.3.2 Aptamers in electrochemical approaches -- 5.2.3.3 Molecularly imprinted polymers in electrochemical approaches -- 5.2.4 Real-time analysis of abused drugs -- 5.2.4.1 Immunochromatographic test strips based on real-time analysis of abused drugs -- 5.2.4.2 Electrochemical-based real-time analysis of abused drugs -- 5.2.4.3 Spectroscopic based real-time analysis of abused drugs -- 5.3 Conclusion and remarks -- References -- Further reading.
  • 6 Biosensors for nucleic acid detection -- 6.1 Introduction -- 6.2 Optical nucleic acid biosensors: principles and feasibilities -- 6.2.1 Surface plasmon resonance-based nucleic acid biosensors -- 6.2.2 Localized surface plasmon resonance-based nucleic acid biosensors -- 6.2.3 Surface-enhanced Raman scattering nucleic acid biosensors -- 6.2.4 Fluorescence-based nucleic acid detection methods -- 6.3 Electrochemical nucleic acid biosensors -- 6.4 Strategies for improving the sensitivity of nucleic acid biosensors -- 6.5 CRISPR/Cas-assisted biosensing platforms for nucleic acid detection -- 6.6 Biosensor applications based on the nucleic acid structure -- 6.7 Conclusion and outlook -- References -- 7 Biosensors for glucose detection -- 7.1 Introduction -- 7.2 Electrochemical glucose biosensors -- 7.2.1 Enzymatic electrochemical glucose biosensors -- 7.2.2 Nonenzymatic electrochemical glucose biosensors -- 7.3 Optical glucose biosensors -- 7.3.1 Enzymatic optical glucose biosensors -- 7.3.2 Nonenzymatic optical glucose biosensors -- 7.4 Other glucose biosensors -- 7.5 Conclusion and remarks -- Acknowledgments -- References -- 8 Recent advances in biosensing technologies for detecting hormones -- 8.1 Introduction -- 8.2 Biosensor types based on biorecognition elements -- 8.2.1 Antibody -- 8.2.2 Enzymes -- 8.2.3 Nucleic acid and aptamers -- 8.2.4 Molecularly imprinted polymers -- 8.3 Biosensors based on transducers in hormone detection -- 8.3.1 Electrochemical biosensors for hormone detection -- 8.3.1.1 Amperometric biosensors -- 8.3.1.2 Potentiometric biosensors -- 8.3.1.3 Impedimetric biosensors -- 8.3.1.4 Conductometric biosensors for hormones -- 8.3.2 Optical biosensors for hormones -- 8.3.3 Microbial screening technique for hormone detection -- 8.3.4 Wearable sensors for hormone detection -- 8.3.5 Other biosensors for hormone.
  • 8.4 Discussion and conclusion -- Acknowledgment -- Conflicts of interest -- References -- 9 Biosensors for cancer biomarker detection -- 9.1 Introduction -- 9.2 Cancer progress and biomarkers -- 9.2.1 Molecular biology of cancer occurrence and progress -- 9.2.2 Cancer biomarkers -- 9.2.2.1 Protein biomarkers -- 9.2.2.2 Genetic biomarkers -- 9.3 Electrochemical biosensors for cancer biomarker detection -- 9.4 Optical biosensors for cancer biomarker detection -- 9.5 Piezoelectric biosensors for cancer biomarker detection -- 9.6 Other biosensors for cancer biomarker detection -- 9.7 Conclusion and remarks -- Acknowledgments -- References -- 10 Classical and new candidate biomarkers for developing biosensors in diagnosing diabetes and prediabetes -- past, present a... -- 10.1 Introduction to diabetes mellitus -- 10.1.1 Prevalence -- 10.1.2 Health issues related to diabetes -- 10.1.3 Economic burden -- 10.2 Pathophysiology of diabetes -- 10.2.1 Type 2 diabetes mellitus -- 10.2.1.1 The role of insulin in energy metabolism -- 10.2.1.2 The ominous octet -- 10.2.2 Type 1 diabetes mellitus -- 10.2.3 Differential diagnosis of T1DM versus T2DM -- 10.2.4 Gestational diabetes mellitus -- 10.3 Glucose as a diabetes biomarker (history, accuracy, advantages, and disadvantages) -- 10.3.1 Current glucose sensors in clinical practice (accuracy, advantages, disadvantages) -- 10.3.1.1 Enzymatic and nonenzymatic sensors -- 10.3.1.2 Continuous glucose monitoring systems -- 10.3.1.3 Invasive continuous glucose sensors -- 10.3.1.4 Noninvasive glucose monitoring system -- 10.3.1.5 Optical sensors -- 10.3.1.6 Electrochemical sensors -- 10.3.1.7 Wearable biosensing -- 10.3.2 The role of nanomaterials in glucose biosensors -- 10.3.3 Glucose biosensors for point-of-care testing -- 10.3.4 Perspective and glucose sensor developments.
  • 10.4 Glycated hemoglobin and glycated albumin as diabetes biomarkers -- 10.4.1 Glycated hemoglobin as a diabetes biomarker (history, accuracy, advantages, and disadvantages) -- 10.4.1.1 Current hemoglobin sensors in clinical practice (accuracy, advantages, disadvantages) -- 10.4.2 Glycated albumin as a diabetes biomarker (history, accuracy, advantages, and disadvantages) -- 10.4.2.1 Current GA biosensors in clinical practice (accuracy, advantages, disadvantages) -- 10.4.3 Perspective and GA sensors (designed biosensors for GA and HbA1c monitoring) in development -- 10.5 Novel biomarkers/metabolites in diabetes and associated complications -- 10.5.1 Micro RNA -- 10.5.2 Peptides/proteins -- 10.5.3 Other novel biomarkers in diabetes and associated complications -- 10.6 Conclusion -- References -- 11 Biosensors for drug detection -- 11.1 Introduction -- 11.2 Criteria of an ideal method for drug analysis -- 11.2.1 Reproducibility, reliability, and accuracy of the method -- 11.2.2 Ease of operation -- 11.2.3 Using the minimum amount of biological sample -- 11.2.4 The speed of analytical process -- 11.2.5 Compatibility with different kinds of biologic fluids -- 11.2.6 The cost -- 11.3 Biosensor design -- 11.3.1 Basic characteristics of a biosensor -- 11.3.2 Nanobiosensors -- 11.4 Biosensors for drug detection -- 11.4.1 Electrochemical biosensors -- 11.4.1.1 Impedometric biosensors -- 11.4.1.2 Potentiometric technique -- 11.4.2 Optical biosensors -- 11.4.2.1 Surface enhanced Raman scattering spectroscopy -- 11.4.2.2 Colorimetric assays -- 11.4.2.3 Chemiluminescence assays -- 11.4.2.4 Fluorescence assays -- 11.4.2.5 SPR assays -- 11.4.3 Photoelectrochemical biosensors -- 11.4.4 Mass biosensors -- 11.4.5 Microfluidic-based (microfluidic-integrated) biosensors -- 11.5 Recent trends in biosensors for drug detection -- 11.6 Conclusion -- References.
  • 12 Micro alcohol fuel cells towards autonomous electrochemical sensors.
  • Advanced Sensor Technology: Biomedical, Environmental, and Construction Applications introduces readers to the past, present and future of sensor technology and its emerging applications in a wide variety of different fields. Organized in five parts, the book covers historical context and future outlook of sensor technology development and emerging applications, the use of sensors throughout many applications in healthcare, health and life science research, public health and safety, discusses chemical sensors used in environmental monitoring and remediation of contaminants, highlights the use of sensors in food, agriculture, fire prevention, automotive and robotics, and more.
  • Description based on print version record.
Sprache
Identifikatoren
ISBN: 0-323-90223-5, 9780323902229
Titel-ID: 99371947951206441
Format
1 online resource (970 pages)
Schlagworte
Detectors

Lade weitere Informationen...