Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 18

Details

Autor(en) / Beteiligte
Titel
When Least Is Best : How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible
Ort / Verlag
Princeton, NJ : Princeton University Press
Erscheinungsjahr
[2021]
Link zu anderen Inhalten
Beschreibungen/Notizen
  • A mathematical journey through the most fascinating problems of extremes and how to solve themWhat is the best way to photograph a speeding bullet? How can lost hikers find their way out of a forest? Why does light move through glass in the least amount of time possible? When Least Is Best combines the mathematical history of extrema with contemporary examples to answer these intriguing questions and more. Paul Nahin shows how life often works at the extremes—with values becoming as small (or as large) as possible—and he considers how mathematicians over the centuries, including Descartes, Fermat, and Kepler, have grappled with these problems of minima and maxima. Throughout, Nahin examines entertaining conundrums, such as how to build the shortest bridge possible between two towns, how to vary speed during a race, and how to make the perfect basketball shot. Moving from medieval writings and modern calculus to the field of optimization, the engaging and witty explorations of When Least Is Best will delight math enthusiasts everywhere
Sprache
Englisch
Identifikatoren
ISBN: 9780691220383
DOI: 10.1515/9780691220383
Titel-ID: 99370865227906441
Format
1 online resource (392 p.); 99 b/w illus
Schlagworte
Mathematics / History, Maxima and minima, MATHEMATICS / History & Philosophy