Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
Functionalized cardiovascular stents
Ort / Verlag
Duxford, England : Woodhead Publishing,
Erscheinungsjahr
2018
Beschreibungen/Notizen
  • Includes bibliographical references and index.
  • Front Cover -- Functionalized Cardiovascular Stents -- Copyright -- Contents -- List of contributors -- Preface -- Acknowledgments -- Part One: Fundamentals of cardiovascular stents -- Chapter 1: Overview of cardiovascular stent designs -- 1.1 Introduction -- 1.2 Percutaneous coronary interventions -- 1.2.1 Percutaneous transluminal coronary angioplasty (PTCA) -- 1.3 Bare metal stents -- 1.3.1 In-stent restenosis -- 1.3.2 Stent platform design -- 1.3.2.1 Stent construction -- 1.3.2.2 Stent geometry -- 1.3.2.3 Stent strut thickness -- 1.3.2.4 Stent platform materials -- 1.4 Drug-eluting stents -- 1.4.1 DES design -- 1.4.2 DES stent platforms -- 1.4.3 DES drugs -- 1.4.3.1 Sirolimus -- 1.4.3.2 Paclitaxel -- 1.4.4 Late-stent thrombosis and the search for better drugs -- 1.4.4.1 Limus analogs -- 1.4.5 DES drug delivery technologies -- 1.4.5.1 Drug release profile -- 1.4.5.2 Polymer-controlled drug release -- Permanent polymers -- Degradable polymers -- 1.4.5.3 Polymer-free DES -- 1.5 Bioresorbable stents -- 1.6 Summary of current state of the art and future perspective -- References -- Further Reading -- Chapter 2: Fundamentals of bare-metal stents -- 2.1 Clinical study of bare-metal stents -- 2.2 Complimentary manufacturing of bare-metal stents -- 2.3 Validation of mechanical properties of metals for bare-metal stent -- 2.4 Material selection -- 2.4.1 Iron and its alloys -- 2.4.2 Magnesium and its alloys -- 2.4.3 Stainless steel 316L -- 2.5 Finite element analysis of stents -- 2.6 Conclusions -- References -- Chapter 3: Development of drug-eluting stents (DES) -- 3.1 First coronary intervention and development of stents -- 3.2 Pathophysiology of restenosis -- 3.3 Methods of testing stent performance and their limitations -- 3.4 First-generation drug-eluting stents -- 3.5 Second-generation DES -- 3.5.1 Synthesis of data on currently approved DES.
  • 3.6 Next-generation DES -- 3.6.1 Abluminal coating -- 3.6.2 Bioresorbable polymers -- 3.6.3 Pro-healing stents -- 3.6.4 Bioresorbable stents -- 3.7 Conclusion -- References -- Chapter 4: Polymer-free drug-eluting stents -- 4.1 Introduction -- 4.2 Moving beyond polymer controlled stent drug release -- 4.2.1 Rationale for polymer-free drug-eluting stents -- 4.2.2 Sustained drug release for clinical efficacy -- 4.3 Direct coating of drug -- 4.4 Stent platform modifications -- 4.4.1 Macroporous stents -- 4.4.1.1 NEVO stent -- 4.4.1.2 Janus Carbostent -- 4.4.1.3 Cre8 -- 4.4.1.4 Polymer-free drug-filled stent -- 4.4.2 Microporous stents -- 4.4.2.1 Yukon stent -- 4.4.2.2 BioFreedom -- 4.4.2.3 YINYI stent -- 4.4.2.4 VESTASYNC -- 4.4.3 Nanoporous stents -- 4.5 Role of stent surface in vessel healing -- 4.6 Summary and future perspectives -- References -- Online sources -- Chapter 5: Fundamentals of bioresorbable stents -- 5.1 Introduction -- 5.1.1 Concept of bioresorbable scaffolds (BRS) -- 5.1.2 Current limitations of bioresorbable stents -- 5.1.2.1 Insufficient mechanical strength -- 5.1.2.2 Lack of radiopacity -- 5.2 Current bioresorbable stents technology -- 5.2.1 PLLA-based scaffolds -- 5.2.1.1 Bioresorption process of PLLA -- 5.2.1.2 Abbott vascular BVS -- 5.2.1.3 Elixir Medical Corp. DESolve -- 5.2.1.4 Amaranth Medical BRS -- 5.2.1.5 Manli Cardiology MIRAGE -- 5.2.1.6 Other PLLA-based scaffolds -- 5.2.2 Other polymeric scaffolds -- 5.2.2.1 REVA Medical ReZolve and Fantom -- 5.2.2.2 Xenogenics Corp. IDEAL (Xenogenics) -- 5.2.3 Biodegradable metallic stents -- 5.2.3.1 Magnesium stents -- BIOTRONIK drug-eluting absorbable magnesium scaffolds (DREAMS) -- Envision Scientific BIOLUTE -- 5.2.3.2 Iron stents -- Life Tech Scientific iron-based bioresorbable scaffold (IBS) -- 5.2.4 Clinical outcomes of the Absorb BVS -- 5.3 Future perspectives -- References.
  • Further Reading -- Chapter 6: Bioabsorbable metallic stents -- 6.1 Introduction -- 6.2 General design criterions of bioabsorbable metallic stents -- 6.2.1 Healing procedure of blood vessels -- 6.2.2 Desired performance of bioabsorbable metallic stents -- 6.3 Development of Mg-based bioabsorbable metallic stents -- 6.3.1 The physiological function of Mg -- 6.3.2 The mechanical properties of Mg and its alloys -- 6.3.3 In vitro testing of Mg-based bioabsorbable metals in cardiovascular applications -- 6.3.4 In vivo testing of Mg-based bioabsorbable metallic stents within blood vessel -- 6.3.4.1 Animal testing of Mg-based bioabsorbable metallic stents -- 6.3.4.2 Clinical testing of Mg-based bioabsorbable metallic stents -- 6.4 Development of Fe-based bioabsorbable metallic stents -- 6.4.1 The physiological function of Fe -- 6.4.2 The mechanical properties of Fe and its alloys -- 6.4.3 In vitro testing of Fe-based bioabsorbable metals for cardiovascular application -- 6.4.4 Animal testing of Fe-based bioabsorbable metals for cardiovascular application -- 6.5 Development of Zn-based bioabsorbable metallic stents -- 6.5.1 The physiological function of Zn -- 6.5.2 The mechanical properties of Zn and its alloys -- 6.5.3 In vitro testing of Zn-based bioabsorbable metals for cardiovascular application -- 6.5.4 Animal testing of Zn-based bioabsorbable metals within blood vessel -- 6.6 Challenges and opportunities for bioabsorbable metallic stents -- References -- Part Two: Coatings and surface modification of cardiovascular stents -- Chapter 7: Physico-chemical stent surface modifications -- 7.1 Introduction -- 7.2 Stent surface functionalization -- 7.2.1 Polymer functionalized surface -- 7.2.2 Metal oxides functionalized surface -- 7.2.3 Metal functionalized surface -- 7.2.4 Endothelial cells functionalized surface.
  • 7.2.5 Antibody fragments functionalized surface -- 7.3 Thiol groups functionalized surface -- 7.3.1 Mercaptosilanization procedure -- 7.3.2 Spectroscopic characterization of mercaptosilanized surface -- 7.3.3 In vitro studies -- 7.4 Conclusion -- References -- Chapter 8: Chemical vapor deposition of cardiac stents -- 8.1 Introduction -- 8.2 Chemical vapor deposition -- 8.3 CVD passivation process evaluation -- 8.3.1 Passivation by SiC-in-vitro evaluation -- 8.3.2 Passivation by SiC-clinical evaluation -- 8.4 Discussion -- 8.5 Conclusion -- References -- Further Reading -- Chapter 9: Polymer coatings for biocompatibility and reduced nonspecific adsorption -- 9.1 Introduction -- 9.2 Classification of plasma -- 9.2.1 Nonthermal plasma -- 9.2.2 Low pressure plasmas -- 9.2.2.1 DC glow discharge -- 9.2.2.2 Radio frequency discharge -- 9.2.2.3 Microwave discharge -- 9.2.2.4 Plasma immersion ion implantation (PIII) -- 9.2.3 Cold atmospheric pressure plasma -- 9.2.3.1 Corona discharge -- 9.2.3.2 Dielectric barrier discharge (DBD) -- 9.2.3.3 Atmospheric pressure glow discharge (APGD) -- 9.2.3.4 Atmospheric pressure plasma jet (APPJ) -- 9.3 Added value of nonthermal plasma for stent applications: Polymer coatings -- 9.3.1 Poly ethylene glycol (PEG): Antifouling coating -- 9.3.2 Heparin: Anticoagulation coatings -- 9.3.3 Chitosan: Antimicrobial and antithrombogenic coatings -- 9.3.4 Acrylic acid: Cytocompatible coatings -- 9.3.5 Diamond like carbon (DLC): Biocompatible coating -- 9.3.6 Other biocompatible coatings -- 9.4 Conclusion -- Acknowledgments -- References -- Chapter 10: Coating stability for stents -- 10.1 Static tests -- 10.2 Dynamic tests -- 10.3 Adhesion -- 10.4 DES and biodegradable polymers -- 10.5 Stability tests involving endothelial cells -- 10.6 Conclusions and perspectives -- References.
  • Chapter 11: Simple one-step covalent immobilization of bioactive agents without use of chemicals on plasma-activated low t ... -- 11.1 Functionalization of stents to improve their clinical performance -- 11.1.1 Methods of covalent immobilization of biomolecules on metals -- 11.1.2 Chemical linkers and spacers -- 11.2 Bioengineering of plasma-activated coatings for stents -- 11.2.1 The plasma deposition process -- 11.2.2 Mechanically resilient and functional PAC for vascular stents -- 11.2.3 Deposition of PAC on stents of varied design and composition -- 11.3 Biological properties of PAC coated stents -- 11.3.1 Blood compatibility -- 11.3.2 Covalent protein immobilization -- 11.3.2.1 Tropoelastin -- 11.3.2.2 Other ECM proteins -- 11.3.3 Bioactive attachment of enzymes -- 11.3.4 Summary -- References -- Part Three: Biofunctionalisation of cardiovascular stent surfaces -- Chapter 12: Chemistry of targeted immobilization of biomediators -- 12.1 Introduction -- 12.2 Targeted immobilization chemistries -- 12.2.1 Amine conjugation -- 12.2.2 Sulfhydryl-reactive conjugations -- 12.2.3 Sialanization -- 12.2.4 Reversible addition fragmentation chain transfer -- 12.2.5 Chemoselective ligation -- 12.3 Future trends -- References -- Chapter 13: Functionalized cardiovascular stents: Cardiovascular stents incorporated with stem cells -- 13.1 Introduction -- 13.2 Adventitial biology for coronary artery disease (CAD) -- 13.2.1 Significance of macrophage in atherosclerotic plaque -- 13.2.2 Macrophage-autophagy (MA) dysfunction in atherosclerotic plaque -- 13.3 Role of stem/progenitor cells in atherosclerosis -- 13.3.1 Migration of BM-SPCs -- 13.3.2 Significance of adventitia SPCs -- 13.3.3 Mesenchymal stem cells (MSCs) -- 13.3.4 Endothelial progenitor cells (EPCs) -- 13.4 Current treatment strategies against atherosclerosis.
  • 13.4.1 Immunotherapy for plaque stabilization.
  • Description based on online resource; title from PDF title page (ebrary, viewed October 17, 2017).
Sprache
Identifikatoren
ISBN: 0-08-100498-2, 0-08-100496-6
Titel-ID: 99370745829006441
Format
1 online resource (353 pages) :; illustrations.
Schlagworte
Cardiovascular system