Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 2
1st ed, 2024
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Nanonetworks : The Future of Communication and Computation
Auflage
1st ed
Ort / Verlag
Newark : John Wiley & Sons, Incorporated,
Erscheinungsjahr
2024
Beschreibungen/Notizen
  • Cover -- Title Page -- Copyright -- Contents -- List of Figures -- List of Tables -- About the Author -- Preface -- Acknowledgments -- Chapter 1 Introduction -- 1.1 Etymology -- 1.2 Science Fiction -- 1.3 Nanotechnology Intuition -- 1.4 Example Applications -- 1.5 Unique Problems and Challenges -- 1.6 Summary -- 1.7 Chapter Overview -- Chapter 2 History -- 2.1 Philosophy -- 2.1.1 Ancient India -- 2.1.2 Greece -- 2.1.3 Modern Era -- 2.1.4 Since 2008 -- 2.2 Manufacturing Accuracy -- 2.2.1 Antiquity -- 2.2.2 Middle Ages -- 2.2.3 Modernity -- 2.2.3.1 Manufacturing Methods -- 2.2.3.2 Microscopes and Imaging -- 2.2.4 From 2D to 3D -- 2.2.5 Placement Accuracy -- 2.3 State of the Art -- 2.3.1 Artificial Materials -- 2.3.2 Programmable Matter -- 2.3.3 Biology -- 2.3.4 Hybrid -- 2.4 Summary -- Chapter 3 Current and Future Applications -- 3.1 Nanotechnology in Materials and Industry -- 3.2 Medicine -- 3.2.1 Convenient Permanent Health Monitoring -- 3.2.2 Targeted Drug Delivery -- 3.2.3 Immediate (Local) Treatment -- 3.2.4 Smart Medicine -- 3.2.5 PCR Alternative -- 3.2.6 Personalized Medicine -- 3.2.7 Vaccines -- 3.2.8 Immune Enhancement -- 3.3 Military -- 3.4 Agriculture and Geology -- 3.5 Future Developments -- 3.6 Summary -- Chapter 4 Construction -- 4.1 Construction Paradigms -- 4.2 Materials -- 4.2.1 Inorganic Carbon -- 4.2.2 Molecules -- 4.2.2.1 Carbon‐Based Nanoclusters and Fullerenes -- 4.2.2.2 Carbon Nanotubes -- 4.3 Nanoparticles -- 4.3.1 DNA -- 4.3.2 Metamaterials and Metasurfaces -- 4.4 Defining Complex Nanostructures -- 4.4.1 Component‐based Approach -- 4.4.2 Components -- 4.4.2.1 Actuators A -- 4.4.2.2 Communication C -- 4.4.2.3 Information Processing I+ -- 4.4.2.4 Locomotion L -- 4.4.2.5 Memory M -- 4.4.2.6 Energy Supply E -- 4.4.2.7 Sensors O -- 4.4.2.8 Timer T -- 4.4.3 Nanonetworks as Markov Decision Processes.
  • 4.4.3.1 Markov Decision Processes -- 4.4.3.2 Partially Observable MDPs -- 4.4.3.3 DecPOMDP -- 4.4.3.4 DecPOMDP with Communication -- 4.4.3.5 Mapping DecPOMDPcom to Components -- 4.5 Nature Adaptation -- 4.6 Miniaturization -- 4.7 Self‐assembly -- 4.7.1 DNA Origami -- 4.7.2 DNA Templating -- 4.7.3 Polymerase Chain Reaction -- 4.7.4 Tile‐based Self‐assembly -- 4.7.5 From Wang to Holliday -- 4.7.5.1 Abstract Tile‐assembly Model -- 4.7.5.2 Kinetic Tile‐assembly Model -- 4.7.5.3 Two‐handed Tile‐assembly Model -- 4.7.5.4 Two‐handed Kinetic Tile‐assembly Model -- 4.8 DNA Errors -- 4.9 Error Correction Mechanisms -- 4.9.1 k×k Proofreading -- 4.9.2 Snaked Proofreading -- 4.9.3 3D Snaked Proofreading -- 4.10 State of the Art of Miniature Structures and Devices -- 4.10.1 DNA Squares and DNA Boxes -- 4.10.1.1 Naive 2D Algorithm -- 4.10.1.2 Naive 3D Algorithm -- 4.10.1.3 3D Linear Runtime Algorithm -- 4.10.1.4 Constant Runtime Algorithm -- 4.10.1.5 Pragmatic Logarithmic Runtime Algorithm -- 4.10.2 DNA Origami Boxes -- 4.10.3 Microbots -- 4.11 Simulation -- 4.11.1 ISU TAS -- 4.11.2 Xgrow -- 4.11.3 NetTAS -- 4.11.4 caDNAno - DNA Origami Simulation -- 4.12 Summary -- Chapter 5 Computation -- 5.1 State at the Nanoscale -- 5.2 Computation -- 5.3 Complexity Theory -- 5.3.1 Complexity at the Nanoscale -- 5.3.2 Reductions -- 5.4 Computational Analysis of Nanoscale Applications -- 5.4.1 Extraction of Mathematical Problems -- 5.4.1.1 Arithmetic and Logical Operators -- 5.4.1.2 Communication -- 5.4.1.3 Complex Operations -- 5.4.1.4 Pattern Matching and Parity -- 5.4.1.5 Security -- 5.4.2 Classification in Complexity Classes -- 5.4.2.1 Uncategorizable Problems -- 5.4.3 Landau Notation -- 5.5 Computational Models for the Nanoscale -- 5.5.1 Nature‐Inspired vs. Artificial Models -- 5.5.2 The Turing Machine -- 5.5.3 Circuit‐Based Computers -- 5.5.4 Artificial Neural Networks.
  • 5.5.5 Quantum‐Dot Cellular Automata -- 5.5.6 Chemical Reaction Networks -- 5.5.7 Genetic Circuits -- 5.5.8 Quantum Computing -- 5.6 Self‐assembly Systems -- 5.6.1 Truth Values in Self‐assembly Systems -- 5.6.2 Message Molecules -- 5.6.3 Ligands -- 5.6.4 Message Molecule Receptors -- 5.6.5 Medical Example Scenario -- 5.6.6 Modularizing the Scenario -- 5.6.7 Errors in Message Molecules -- 5.6.8 Logical Combination of Message Molecules -- 5.6.9 Modeling Message Molecules -- 5.6.9.1 Solving The Decision Problem -- 5.6.9.2 k‐Bit Or -- 5.6.9.3 k‐Bit Thres -- 5.6.9.4 k‐Bit Add -- 5.6.9.5 k‐Bit Mult -- 5.6.9.6 k‐Bit Xor -- 5.6.9.7 k‐Bit‐Count -- 5.7 Finding Programs for Nanodevices -- 5.7.1 Solving DecPOMDPcoms -- 5.7.1.1 Lifting -- 5.7.2 Value Iteration -- 5.7.3 Genetic/Evolutionary Algorithms -- 5.8 Summary -- Chapter 6 Simple Communication -- 6.1 A Brief History of Communication -- 6.2 Definitions -- 6.2.1 Gateways -- 6.2.2 Communication Parameter Overview -- 6.3 Electromagnetic Communication -- 6.3.1 History and Driving Forces -- 6.3.2 5G and 6G -- 6.3.3 Channel Models -- 6.3.4 Information Representation -- 6.4 Molecular Communication -- 6.4.1 Classical Molecular Communication -- 6.4.2 DNA -- 6.4.3 Channel Models -- 6.5 Acoustic Communication -- 6.5.1 Nanoscale Acoustic Communication -- 6.5.2 Medical Constraints -- 6.6 Quantum Communication -- 6.7 FRET -- 6.8 Nanophotonics -- 6.9 Comparison -- 6.10 Multi‐hop Communication -- 6.10.1 Addressing -- 6.10.2 Routing Protocols -- 6.10.3 Hop‐count Routing -- 6.11 Communication and Network Simulators -- 6.12 Summary -- Chapter 7 Movement and Localization -- 7.1 Definition -- 7.2 Passive Movement -- 7.2.1 Brownian Motion -- 7.2.2 Diffusion -- 7.2.3 Blood Stream and Bulk Flow -- 7.3 Active Movement -- 7.3.1 Chemotaxis -- 7.3.2 Other Motor Proteins -- 7.3.3 Artificial Movement -- 7.3.4 Comparison of Locomotion Types.
  • 7.4 Localization -- 7.4.1 Multi‐gateway Hop‐Count Localization -- 7.4.2 Age of Information -- 7.4.3 Tissue Fingerprinting -- 7.5 Simulation -- 7.5.1 BloodVoyagerS -- 7.5.2 MEHLISSA -- 7.5.2.1 Body Module -- 7.5.2.2 Organ Module -- 7.5.2.3 Capillary Module -- 7.5.2.4 Cell Module -- 7.6 Organs‐on‐Chips -- 7.7 Summary -- Chapter 8 Sensors and Actuators -- 8.1 Application Scenarios -- 8.2 Measuring Systems -- 8.3 Sensors -- 8.3.1 CNT‐based Sensors -- 8.3.2 Magnetic Sensors -- 8.3.3 Molecule Counters and Biosensors -- 8.4 Actuators -- 8.4.1 Motors -- 8.4.2 Antennas -- 8.4.3 Medication -- 8.4.4 Dispenser -- 8.4.5 Switches -- 8.4.6 Mechanical Actuators -- 8.5 Summary -- Chapter 9 Energy -- 9.1 Energy Sources -- 9.2 Storing Energy -- 9.2.1 Batteries Based on Zinc Oxide Nanowires -- 9.2.2 (Super‐)Capacitors -- 9.3 Energy Harvesting and Generators -- 9.3.1 The Generator -- 9.3.2 Harvesting Mechanical Energy and the Piezoelectrical Effect -- 9.3.3 Ultrasonic Energy -- 9.3.4 Radiofrequency Harvesting -- 9.3.5 Ambient Heat -- 9.3.6 Adenosine Triphosphate -- 9.3.7 Fuel Cells -- 9.4 Saving Energy -- 9.4.1 Communication -- 9.4.2 Electromagnetic vs. Molecular vs. Acoustic -- 9.4.3 Preprocessing, Encoding, and Aggregation -- 9.4.4 Saving via Protocols -- 9.4.4.1 Destructive Retrieval -- 9.4.4.2 Stateless Linear Path Saving -- 9.4.4.3 Obstacles -- 9.4.4.4 Ring Saving -- 9.5 Summary -- Chapter 10 Time and Randomness -- 10.1 Time -- 10.2 Synchronization -- 10.2.1 Cristian's Algorithm -- 10.2.2 Berkeley -- 10.2.3 NTP -- 10.2.4 Fireflies -- 10.2.5 Clocking -- 10.2.5.1 QCA Synchronization -- 10.2.5.2 Self‐assembly Synchronization -- 10.3 Logical Time -- 10.4 Consistency -- 10.4.1 Types of Consistencies -- 10.4.2 CAP Theorem -- 10.5 Randomness -- 10.5.1 Pseudorandom -- 10.5.2 True Random -- 10.6 Summary -- Chapter 11 Safety and Security -- 11.1 Nanonetwork Safety Analysis.
  • 11.1.1 Classical Attack Types -- 11.1.2 Classical Secure System Properties -- 11.2 Attack Types -- 11.2.1 Gaining Physical Access -- 11.2.2 Universal Attacks -- 11.2.2.1 Message/Cipher Eavesdropping -- 11.2.2.2 Injection Attack -- 11.2.2.3 Denial of Service -- 11.2.3 Attacks on Wireless Nanonetworks -- 11.2.3.1 Black Hole Attacks -- 11.2.3.2 Wormhole Attack -- 11.2.3.3 Replay Message Attack -- 11.2.3.4 Man‐in‐the‐Middle Attack -- 11.2.3.5 Malware Attack -- 11.2.3.6 Device Tampering -- 11.2.4 Attacks on DNA/Molecular Nanonetworks -- 11.2.4.1 Attractant/Repellant Attacks -- 11.2.4.2 Molecular DoS/Congestion Attack -- 11.2.4.3 Chemical/Physical Disruption -- 11.3 Securing Nanonetworks -- 11.3.1 Low‐power AES -- 11.3.2 One‐Time Pads -- 11.3.3 Cyclic Redundancy Check -- 11.3.4 Low‐power Hashing -- 11.3.5 Medium Access Control -- 11.3.6 Gateway Security -- 11.4 Molecular and DNA‐based Security -- 11.4.1 Infeasibility of Classical Algorithms -- 11.4.2 Steganography -- 11.5 Summary -- Chapter 12 Nanonetwork Concepts and Architectures -- 12.1 From Macro to Nano -- 12.2 Nanonetwork Role Models -- 12.2.1 IoNT -- 12.2.2 Body Area Networks -- 12.2.3 Swarm‐Based Networks and Self‐organization -- 12.3 Nanonetworks -- 12.3.1 Acoustic Nanonetworks -- 12.3.2 EMC Nanonetworks -- 12.3.2.1 Nanonetworks on Chips -- 12.3.3 Bacteria‐based Nanonetworks -- 12.3.4 Molecular Nanonetworks -- 12.4 DNA‐Based Nanonetworks -- 12.4.1 And - The Distributed Consensus -- 12.4.2 Thres - Exceeding a Critical Threshold -- 12.4.3 Add - Basic Arithmetics -- 12.4.4 Solving Arbitrary Boolean Formulas -- 12.4.5 Solving Arbitrary Computations - Turing Networks -- 12.4.6 Personalized Health Parameter Anomaly Detection -- 12.4.7 Tile‐based Anomaly Detection -- 12.4.7.1 Phase 1 -- 12.4.7.2 Phase 2 -- 12.4.7.3 Evaluation -- 12.4.7.4 Realistic Simulation in the kTAM -- 12.4.7.5 Analysis in the 2HAM.
  • 12.5 Verification Methods for Nanonetworks.
  • Description based on publisher supplied metadata and other sources.
Sprache
Identifikatoren
ISBN: 1-394-21313-1, 1-394-21311-5
Titel-ID: 9925207057406463
Format
1 online resource (386 pages)