Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 10

Details

Autor(en) / Beteiligte
Titel
Chemical Physics of Polymer Nanocomposites : Processing, Morphology, Structure, Thermodynamics, Rheology
Auflage
1st ed
Ort / Verlag
Newark : John Wiley & Sons, Incorporated,
Erscheinungsjahr
2024
Beschreibungen/Notizen
  • Cover -- Volume I -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Classification of Nanofillers, Nano‐Objects, Nanomaterials, and Polymer Nanocomposites Based on Chemical Nature and Identity -- 1.1 Classification of Nanocomposites -- 1.2 Classification of Nanofillers -- 1.3 Classification of Nano‐Objects and Nanomaterials -- 1.4 Production Method and Existing Form of Nano‐Objects -- 1.5 Classification of Polymer Nanocomposites -- 1.6 Summaries -- References -- Chapter 2 Biological and Chemical Synthesis of Nanoparticles -- 2.1 Introduction -- 2.2 Synthesis Approach of Nanoparticles -- 2.2.1 Bottom‐Up Approach -- 2.2.1.1 Non‐Biological Synthesis of Nanoparticles -- 2.2.2 Top‐Down Approach -- 2.2.2.1 Spinning Methods -- 2.2.2.2 Template Based Synthesis -- 2.2.2.3 Chemical Vapor Deposition -- 2.2.2.4 Laser Pyrolysis Synthesis of Nanoparticles -- 2.2.2.5 Flame Spray Pyrolysis Synthesis of Nanoparticles -- 2.2.2.6 Inert Gas Condensation -- 2.2.2.7 Laser Ablation -- 2.2.2.8 Mechanical Milling -- 2.2.2.9 Chemical Etching -- 2.2.2.10 Electro‐Explosion of Wire -- 2.2.3 Biological Synthesis of Nanoparticles -- 2.2.3.1 Bacteria Mediated Nanoparticles -- 2.2.3.2 Fungi Mediated Nanoparticles -- 2.2.3.3 Yeasts Mediated Nanoparticles -- 2.2.3.4 Algae Mediated Nanoparticles -- 2.2.3.5 Plant‐Mediated Nanoparticles -- 2.3 Conclusion -- References -- Chapter 3 Using In situ Polymerization for Manufacturing of Polymer Nanocellulose -- 3.1 Introduction -- 3.2 In situ Polymerization -- 3.3 Cellulose Nanoparticles -- 3.4 Polymer Nanocellulose -- 3.5 Method of Polymer Nanocomposite Processing -- 3.5.1 Solvent Casting and Evaporation -- 3.5.2 Coating Polymerization Process -- 3.5.3 Melt Processing -- 3.5.4 Radical Polymerization -- 3.5.5 Other Methods -- 3.6 Applications of In situ Polymerization Methods for the Production of Nanocellulose Materials.
  • 3.7 Future of In situ Polymerization Manufacturing Processes -- 3.8 Conclusion -- References -- Chapter 4 Manufacturing of Nanocomposites by Electrospinning -- 4.1 Introduction -- 4.2 Electrospinning Process -- 4.2.1 Principles of the Process -- 4.2.2 Solution Parameters -- 4.2.2.1 Concentration and Viscosity of Solution -- 4.2.2.2 Surface Tension -- 4.2.2.3 Conductivity of Solution -- 4.2.2.4 Polymer Molecular Weight -- 4.2.2.5 Addition of Inorganic Components -- 4.2.2.6 Applied Voltage -- 4.2.2.7 Receiving Distance -- 4.2.2.8 Feed Rate -- 4.2.2.9 Electrospinning Type/Principle/Spinneret -- 4.2.2.10 Receiver Morphology/Specification -- 4.2.3 Environmental Parameters -- 4.2.3.1 Temperature -- 4.2.3.2 Humidity -- 4.3 Fiber Type -- 4.3.1 Organic Polymers (Natural Polymers, Synthetic Polymers) -- 4.3.1.1 Natural Polymers -- 4.3.1.2 Synthetic Polymers -- 4.3.2 Inorganic Materials -- 4.3.2.1 Carbon Nanofibers -- 4.3.2.2 Metal Oxide Nanofibers -- 4.3.2.3 Metal Nanofibers -- 4.4 Electrospinning of Nanocomposite -- 4.4.1 Polymer/Polymer -- 4.4.2 Polymer/Inorganic -- 4.4.3 Inorganic/Inorganic -- 4.5 Application -- 4.5.1 Filtration -- 4.5.2 E‐spun Nanofibers for Hazardous Substances Adsorption -- 4.5.3 E‐spun Nanofibers for Bioengineering Separation -- 4.5.4 E‐spun Nanofibers for Insulation -- 4.5.5 Medical/Biological Applications -- 4.5.6 Catalysis -- 4.5.7 Energy Conversion and Storage -- 4.5.8 Triboelectric Nanogenerator -- 4.6 Summary and Outlook -- References -- Chapter 5 Polymer Nanocomposites Based on Metal Oxide Nanoplatelets -- 5.1 Introduction -- 5.2 Polymers -- 5.2.1 Polymer Structure -- 5.2.2 Design Approaches to Polymers -- 5.2.2.1 Surface‐initiated Atom‐Transfer Radical Polymerization (SI‐ATRP) -- 5.2.2.2 Surface‐initiated Reversible Addition-Fragmentation Chain‐Transfer (SI‐RAFT) Strategy -- 5.3 Properties of Nanoplatelets (NPLs).
  • 5.3.1 Applications of Nanoplatelets -- 5.4 Polymer-Metal Oxide Nanocomposite Materials -- 5.4.1 Properties of Polymer-Metal Oxide Nanocomposites -- 5.4.1.1 Electrical Properties -- 5.4.1.2 Optical Properties -- 5.4.1.3 Thermal Properties -- 5.4.1.4 Mechanical Properties -- 5.4.2 Designs of Polymer-Metal Oxide Composites -- 5.4.3 Synthesis Methods of Polymer-Metal Oxide Composites -- 5.4.3.1 Blending/Mixing -- 5.4.3.2 In situ polymerization -- 5.4.3.3 Sol-Gel Process -- 5.5 General Applications of Polymer-Metal Oxide Composites -- 5.5.1 Applications of Polymer-Metal Oxide Composites in Sensors -- 5.5.2 Applications of Polymer-Metal Oxide Composites in Supercapacitors -- 5.6 Conclusion -- Acknowledgments -- References -- Chapter 6 Polymer Nanocomposites Filled in Carbon Nanotubes: Properties and Applications -- 6.1 Introduction -- 6.1.1 Polymer Nanocomposites -- 6.1.2 Carbon Nanotubes -- 6.1.2.1 Functionalization of CNTs -- 6.1.3 Potential Uses of CNT‐based Polymer Nanocomposites -- 6.1.4 Some Examples of Thermoplastics Used as Nanocomposite Matrix -- 6.1.4.1 Poly (Trimethylene Terephthalate) -- 6.1.4.2 Acrylonitrile Butadiene Styrene -- 6.1.4.3 Polycarbonate -- 6.1.4.4 Poly (Lactic Acid) -- 6.2 Experimental Section: Production of Nanocomposites Filled CNT -- 6.2.1 CNT Functionalization -- 6.2.2 Polyester‐based CNT Nanocomposites: PTT/CNT -- 6.2.3 Blend‐based CNT Nanocomposites: PTT/ABS/CNT -- 6.2.4 Blend‐based CNT Nanocomposites: PC/ABS/CNT -- 6.2.4.1 Injection Molding Process -- 6.2.5 Mechanical, Electrical Characterization and Morphology -- 6.3 Results and Discussion -- 6.3.1 CNT Functionalization -- 6.3.2 Electrical and Mechanical Properties of CNT/Polymer Nanocomposites -- 6.3.3 Electrical and Mechanical Properties of Polymer Blends‐based CNT Nanocomposites -- 6.3.3.1 PTT/ABS/MWCNT Films -- 6.3.3.2 PC/ABS/MWCNT Injection Molded Samples.
  • 6.4 Conclusions -- Acknowledgments -- References -- Chapter 7 Polymer Nanocomposites Filled in Nanocellulose and Cellulose‐whiskers -- 7.1 Introduction -- 7.2 Nanocellulose: Extraction, Types, and Application -- 7.3 Polymers Nanocomposites -- 7.3.1 Thermoplastic -- 7.3.2 Thermosetting -- 7.3.3 Elastomers -- 7.4 Nanocellulose Nanocomposite Applications -- 7.5 Processing: Different Approaches and Dispersion Methods of Nanocellulose -- 7.6 Future Trends and Perspectives -- Acknowledgments -- References -- Chapter 8 Polymer Nanocomposites Based on Nano Chitin -- 8.1 Introduction -- 8.2 Top‐Down Approach for the Preparation of Nanochitins -- 8.3 Top‐Down Approach for the Preparation of Nanochitin/Polymer Composites -- 8.4 Bottom‐Up Approach for the Preparation of Nanochitins -- 8.5 Bottom‐Up Approach for the Preparation of Nanochitin/Polymer Composites -- 8.6 Conclusions -- Acknowledgment -- References -- Chapter 9 Nanostarch‐Filled Polymer Nanocomposites -- 9.1 Introduction -- 9.2 Nanostarch -- 9.2.1 Starch Nanocrystals (SNCs) -- 9.2.2 Amorphous Starch Nanoparticles (SNPs) -- 9.2.3 Nanostarch Functionalization -- 9.3 Nanostarch‐Filled Nanocomposites from Synthetic Polymers -- 9.4 Nanostarch‐Filled Nanocomposites from Natural Polymers -- 9.4.1 Nanostarch‐Filled Starch‐Based Nanocomposites -- 9.4.1.1 Applications of Nanostarch-Starch Nanocomposites in Food Packaging -- 9.5 Regulatory Aspects -- 9.6 Summary and Future Perspectives -- References -- Chapter 10 Polymer Nanocomposites Based on Nanolignin: Preparation, Properties, and Applications -- 10.1 Introduction -- 10.2 Extraction of Lignin -- 10.3 Preparation of Nanolignin and Lignin Nanoparticles -- 10.3.1 Antisolvent Precipitation -- 10.3.1.1 Acid Solution as Antisolvent -- 10.3.1.2 Supercritical CO2 as Antisolvent -- 10.3.2 Physiochemical Preparation of Lignin Nanoparticles -- 10.3.2.1 Homogenization.
  • 10.3.2.2 Ultrasonication -- 10.3.3 Ice Segregation‐induced Self‐assembly -- 10.3.4 Electrospinning of Solutions -- 10.3.5 Aerosol Flow Synthesis -- 10.4 Properties of Nanolignin -- 10.5 Nanolignin Based Nanocomposites -- 10.5.1 Thermoplastic-Lignin Nanocomposites -- 10.5.2 Thermoset-Lignin Nanocomposites -- 10.5.2.1 Formaldehyde‐Based Thermoset-Lignin Nanocomposite -- 10.5.2.2 Epoxy‐Based Thermoset-Lignin Nanocomposite -- 10.5.3 Elastomer- Lignin Nanocomposites -- 10.5.3.1 Natural Rubber‐Based Elastomer-Lignin Nanocomposite -- 10.5.3.2 Synthetic Rubber‐Based Elastomer-Lignin Nanocomposite -- 10.6 Applications of Nanolignin and Lignin Nanocomposites -- 10.6.1 Antibacterial Effect -- 10.6.2 Reinforcing Materials -- 10.6.3 Anti‐ultraviolet Effect -- 10.6.4 Food Packaging Films -- 10.6.5 Green Synthesis of Phenol‐formaldehyde -- 10.6.6 Lignin Composite Foam -- 10.6.7 Future Trends -- 10.7 Conclusions -- References -- Chapter 11 Polymer Nanocomposites Based on Talc -- 11.1 Introduction -- 11.2 Talc -- 11.2.1 General Aspects -- 11.2.2 Geology -- 11.3 Talc/Polymer Nanocomposites Compounding -- 11.4 Influence of Talc Characteristics and Concentration on Polymer Nanocomposites Properties -- 11.4.1 Particle Morphology -- 11.4.2 Particle Size -- 11.4.3 Degree of Purity -- 11.4.4 Nucleating Capability -- 11.4.5 Particle Concentration -- 11.5 Chemical Modifications of Talc -- 11.6 Influence of Talc Surface Treatments on Polymer Nanocomposites Properties -- 11.7 Industrial Applications -- 11.8 Concluding Remarks -- References -- Volume II -- Title Page -- Copyright -- Contents -- Preface -- Chapter 12 Polymer Nanocomposites Based on Graphene and Graphene Oxide -- 12.1 Introduction -- 12.2 Graphene and Oxide Graphene -- 12.3 Polymer Nanocomposites Based on Graphene and Graphene Oxide -- 12.3.1 Obtention of Polymer Nanocomposites Based on Graphene and Graphene Oxide.
  • 12.3.2 Structural Advantages of Graphene‐Polymer Nanocomposites.
  • Description based on publisher supplied metadata and other sources.
Sprache
Identifikatoren
ISBN: 3-527-83702-7, 3-527-83700-0
Titel-ID: 9925204068306463
Format
1 online resource (1062 pages)